In-place bonded semiconductor membranes as compliant substrates for III-V compound devices.

Nanoscale

Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brasil.

Published: February 2019

Overcoming the critical thickness limit in pseudomorphic growth of lattice mismatched heterostructures is a fundamental challenge in heteroepitaxy. On-demand transfer of light-emitting structures to arbitrary host substrates is an important technological method for optoelectronic and photonic device implementation. The use of freestanding membranes as compliant substrates is a promising approach to address both issues. In this work, the feasibility of using released GaAs/InGaAs/GaAs membranes as virtual substrates to thin films of InGaAs alloys is investigated as a function of the indium content in the films. Growth of flat epitaxial films is demonstrated with critical thickness beyond typical values observed for growth on bulk substrates. Optically active structures are also grown on these membranes with a strong photoluminescence signal and a clear red shift for an InAlGaAs/InGaAs/InAlGaAs quantum well. The red shift is ascribed to strain reduction in the quantum well due to the use of a completely relaxed membrane as the substrate. Our results demonstrate that such membranes constitute a virtual substrate that allows further heterostructure strain engineering, which is not possible when using other post-growth methods.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr08727jDOI Listing

Publication Analysis

Top Keywords

membranes compliant
8
compliant substrates
8
critical thickness
8
red shift
8
quantum well
8
membranes
5
substrates
5
in-place bonded
4
bonded semiconductor
4
semiconductor membranes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!