Underfat individuals have been neglected as a malnourished population in terms of redox homeostasis. The aim of the present study was to evaluate the effect of body composition on redox homeostasis at rest and in response to exercise. Underfat, lean and overfat women, classified according to their BMI and body fat percentage, participated in the study and were subjected to an acute session of eccentric exercise. With regard to muscle function and damage, a significant group × time interaction was found for range of motion ( < .01), isometric peak torque at 90° ( < .01), delayed onset muscle soreness ( < .01) and creatine kinase ( < .05), with the lean group generally exhibiting faster recovery compared to the underfat and overfat groups. With regard to redox homeostasis, a significant group × time interaction was found for F-isoprostanes, protein carbonyls and glutathione ( < .01 for all biomarkers), with the underfat and overfat groups exhibiting increased resting oxidative stress levels and lower exercise-induced reactive species production . In conclusively, our data underline the importance of normal body composition for redox homeostasis, since underfat and overfat women demonstrate a similar pattern of redox disturbances both at rest and in response to exercise.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02640414.2019.1578450DOI Listing

Publication Analysis

Top Keywords

redox homeostasis
12
body composition
8
composition redox
8
homeostasis rest
8
rest response
8
response exercise
8
exercise case
4
case underfat
4
underfat women
4
women underfat
4

Similar Publications

Bi-targeting of thioredoxin 1 and telomerase by thiotert promotes cell death of myelodysplastic syndromes and lymphoma.

Biol Direct

January 2025

Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.

Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.

View Article and Find Full Text PDF

Mycotoxin toxicity and its alleviation strategy on female mammalian reproduction and fertility.

J Adv Res

January 2025

College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Research On Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China. Electronic address:

Background: Mycotoxin, a secondary metabolite of fungus, found worldwide and concerning in crops and food, causing multiple acute and chronic toxicities. Its toxic profile includes hepatotoxicity, carcinogenicity, teratogenicity, estrogenicity, immunotoxicity, and neurotoxicity, leading to deleterious impact on human and animal health. Emerging evidence suggests that it adversely affects perinatal health, progeny by its ability to cross placental barriers.

View Article and Find Full Text PDF

NADPH Oxidases: Redox Regulation of Cell Homeostasis & Disease.

Physiol Rev

January 2025

Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261.

The redox signaling network in mammals has garnered enormous interest and taken on major biological significance in recent years as the scope of NADPH oxidases (NOXs) as regulators of physiological signaling and cellular degeneration has grown exponentially. All NOX subtypes have in common the capacity to generate reactive oxygen species (ROS) superoxide anion (O) and/or hydrogen peroxide (HO). A baseline, normal level of ROS formation supports a wide range of processes under physiological conditions.

View Article and Find Full Text PDF

Astragaloside IV can mitigate heat stress-induced tissue damage through modulation of the Keap1-Nrf2 signaling pathway in grass carp (Ctenopharyngodon idella).

Fish Shellfish Immunol

January 2025

Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528225, China. Electronic address:

This study investigated the potential protective effect of AS-IV against heat stress-induced tissue damage in grass carp (Ctenopharyngodon idella). Grass carp were injected intraperitoneally with 0, 2, 4, and 8 mg/kg of AS-IV for three consecutive days, and then subjected to heat stress (35 ± 0.5°C); thereafter, histopathological analyses of the liver and spleen were performed at 0, 6, 24, and 48 h, respectively.

View Article and Find Full Text PDF

Understanding cataract development in axial myopia: The contribution of oxidative stress and related pathways.

Redox Biol

January 2025

Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland; Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland; GlaucoTech Co, Katowice, Poland.

Myopia is an evolving global health challenge, with estimates suggesting that by 2050 it will affect half of the world's population, becoming the leading cause of irreversible vision loss. Moreover, myopia can lead to various complications, including the earlier onset of cataracts. Given the progressive aging of the population and the increase in life expectancy, this will contribute to a rising demand for cataract surgery, posing an additional challenge for healthcare systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!