A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic algorithm as an optimization tool for the development of sponge cell culture media. | LitMetric

Sponges are rich sources of novel natural products. Production in cell cultures may be an option for supply of these compounds but there are currently no sponge cell lines. Because there is a lack of understanding about the precise conditions and nutritional requirements that are necessary to sustain sponge cells in vitro, there has yet to be a defined, sponge-specific nutrient medium. This study utilized a genetic algorithm approach to optimize the amino acid composition of a commercially available basal cell culture medium in order to increase the metabolic activity of cells of the marine sponge Dysidea etheria. Four generations of the algorithm were carried out in vitro in wet lab conditions and an optimal medium combination was selected for further evaluation. When compared to the basal medium control, there was a twofold increase in metabolic activity. The genetic algorithm approach can be used to optimize other components of culture media to efficiently optimize chosen parameters without the need for detailed knowledge on all possible interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407725PMC
http://dx.doi.org/10.1007/s11626-018-00317-0DOI Listing

Publication Analysis

Top Keywords

genetic algorithm
12
sponge cell
8
cell culture
8
culture media
8
algorithm approach
8
approach optimize
8
increase metabolic
8
metabolic activity
8
algorithm optimization
4
optimization tool
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!