The removal of contaminants by iron-based nanomaterials was inevitably affected by the natural organic matter (NOM), which is one of the most abundant material on earth and exists in natural waters. This study was performed to investigate the main influence of humic acid (HA, representing NOM) on the behavior and reactivity of Ni/Fe nanoparticles in the removal of deca-brominated diphenyl ether (BDE209). Generally, the inhibitory effect of HA on the removal of BDE209 by Ni/Fe showed greater significance with an increase of HA concentration. The zeta potential and sedimentation experiments showed that the HA enhanced the dispersion and stabilization of Ni/Fe particles; however, the removal of BDE209 was found to be inhibited. Moreover, the corrosion capacity of the Ni/Fe nanoparticles showed a positive correlation with the effect of HA on the reactivity of Ni/Fe nanoparticles. Meanwhile, typical quinone compounds in HA had an adverse effect on the removal of BDE209. Additionally, the competitive adsorption experiments and characterization illustrated that the adsorption of HA by Ni/Fe nanoparticles was superior to BDE209. Overall, it was proposed that the corrosion of Ni/Fe was reduced as the contact between the nanoparticles and HO was hindered due to the surface of Ni/Fe was occupied by the adsorbed HA, and thus inhibited the reactivity of Ni/Fe nanoparticles in the removal of BDE209.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-04403-y | DOI Listing |
Heliyon
January 2025
Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, 100000 Tashkent, Uzbekistan.
Convectional drugs have failed to tackle the increasing public health challenge of Cancer and diabetes. Phytochemical conjugated nanoparticles are providing safer therapeutic alternatives to address this global challenge. Nanoparticles of nickel, iron and zinc are especially useful because of their magnetic properties, abilities to prevent the onset or slow the progression of these diseases.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
Metal nanocatalysts supported on oxide scaffolds have been widely used in energy storage and conversion reactions. So far, the main research is still focused on the growth, density, size, and activity enhancement of exsolved nanoparticles (NPs). However, the lack of precise regulation of the type and composition of NPs elements under reduction conditions has restricted the architectural development of in situ exsolution systems.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
College of Materials, Institute of Artificial Intelligence, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China.
Nickel-iron-based catalysts are recognized for their high efficiency in the oxygen evolution reaction (OER) under alkaline conditions, yet the underlying mechanisms that drive their superior performance remain unclear. Herein, we revealed the molecular OER mechanism and the structure-intermediate-performance relationship of OER on a phosphorus-doped nickel-iron nanocatalyst (NiFeP). NiFeP exhibited exceptional activity and stability with an overpotential of only 210 mV at 10 mA cm in 1 M KOH and a cell voltage of 1.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, No. 5988 Renmin Street, Changchun 130022, China.
TiC-TiB dual-phase nanoparticles were added into a Ni-Fe-based cast superalloy and their effects on the microstructure and mechanical properties were compared to those of a Ni-Fe-based superalloy with the addition of TiC nanoparticles. The addition of TiC nanoparticles led to the precipitation of a higher volume fraction of carbides. Compared to the addition of TiC, the addition of TiC-TiB nanoparticles not only led to the precipitation of carbides but also promoted the formation of flaky borides and a reduction in the precipitation of the Laves phase.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China.
The electrochemical reduction of oxygen is pivotal for advancing emerging energy technologies. Precise control over morphology and electronic structure is essential for enhancing catalytic activity and stability in the oxygen reduction reaction (ORR). In this study, a freestanding carbon electrode is developed by in-situ growth of carbon nanotube (CNT)-encapsulated bimetallic CoM (M = Ni, Fe, Mn, Cu) nanoparticles (NPs) within a hierarchical carbonized wood matrix (CoM@NWCC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!