Cognitive impairment in diabetes (CID) is a severe chronic complication of diabetes mellitus (DM). It has been hypothesized that diabetes can lead to cognitive dysfunction due to expression changes of excitatory neurotransmission mediated by N-methyl-D-aspartate receptors (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR); however, the pathogenesis involved in this has not been fully understood, especially at early phase of DM. Here, we sought to determine the cognitive changes and aim to correlate this with the expression changes of NMDAR and AMPAR of glutamate signaling pathways in the rat hippocampus from early phase of DM and in the course of the disease progression. By Western blot analysis and immunofluorescence labeling, the hippocampus in diabetic rats showed a significant increase in protein expression NMDAR subunits NR1, NR2A and NR2B and AMPAR subunit GluR1. Along with this, behavioral test by Morris water maze showed a significant decline in their performance when compared with the control rats. It is suggested that NR1, NR2A, NR2B and GluR1are involved in learning and memory and that their expression alterations maybe correlated with the occurrence and development of CID in diabetic rats induced by streptozotocin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-019-02733-4 | DOI Listing |
Biol Direct
December 2024
Urology Unit, Department of Surgery, Tor Vergata University of Rome, Rome, Italy.
Background: Prostate cancer is the most common diagnosed tumor and the fifth cancer related death among men in Europe. Although several genetic alterations such as ERG-TMPRSS2 fusion, MYC amplification, PTEN deletion and mutations in p53 and BRCA2 genes play a key role in the pathogenesis of prostate cancer, specific gene alteration signature that could distinguish indolent from aggressive prostate cancer or may aid in patient stratification for prognosis and/or clinical management of patients with prostate cancer is still missing. Therefore, here, by a multi-omics approach we describe a prostate cancer carrying the fusion of TMPRSS2 with ERG gene and deletion of 16q chromosome arm.
View Article and Find Full Text PDFBreast Cancer Res
December 2024
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.
View Article and Find Full Text PDFEur J Med Res
December 2024
School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Infertility is a prevalent problem among 10% of people within their reproductive years. Sometimes, even advanced treatment options like assisted reproduction technology have the potential to result in failed implantation. Because of the expected changes in gene expression during both in vitro and in vivo fertilization processes, these methods of assisting fertility have also been associated with undesirable pregnancy outcomes related to infertility.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
Background: Pancreatic cancer (PC) is a lethal malignancy characterized by poor prognosis and high mortality. We found the highly expressed RNA-binding motif protein 47 (RBM47) in PC progression. The RBM47 expression was negatively correlated with natural killer (NK) cell infiltrate in PC.
View Article and Find Full Text PDFBMC Biol
December 2024
State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
Background: Global climate change significantly impacts ecosystems, particularly through temperature fluctuations that affect insect physiology and behavior. As poikilotherms, insect pests such as the globally devastating diamondback moth (DBM), Plutella xylostella, are especially vulnerable to rising temperatures and extreme heat events, necessitating effective adaptive mechanisms.
Results: Here we demonstrate the roles of zinc finger proteins (ZFPs) in mediating thermal adaptability in DBM.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!