Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current genome-enabled prediction models assumed errors normally distributed, which are sensitive to outliers. We propose a model with errors assumed to follow a Laplace distribution to deal better with outliers. Current genome-enabled prediction models use regressions that fit the expected value (mean) of a response variable with errors assumed normally distributed, which are often sensitive to outliers, either genetic or environmental. For this reason, we propose a robust Bayesian genome median regression (BGMR) model that fits regressions to the medians of a distribution, with errors assumed to follow a Laplace distribution to deal better with outliers. The BGMR model was evaluated under a Bayesian framework with Markov Chain Monte Carlo sampling using a location-scale mixture representation of the Laplace distribution. The BGMR was implemented with two simulated and two real genomic data sets, and we compared its prediction performance with that of a conventional genomic best linear unbiased prediction (GBLUP) model and the Laplace maximum a posteriori (LMAP) method. The prediction accuracies of BGMR were higher than those of the GBLUP and LMAP methods when there were outliers. The BGMR model could be useful to breeders who need to predict and select genotypes based on data with unknown outliers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-019-03303-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!