A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced electrochemiluminescent brightness and stability of porphyrins by supramolecular pinning and pinching for sensitive zinc detection. | LitMetric

Enhanced electrochemiluminescent brightness and stability of porphyrins by supramolecular pinning and pinching for sensitive zinc detection.

Anal Bioanal Chem

Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China.

Published: July 2019

Ultrasensitive electrochemiluminescence (ECL) detection can benefit substantially from the rational configuration of emitter-enhancer stereochemistry. Here, using zinc(II) meso-5,10,15,20-tetra(4-sulfonatophenyl)porphyrin (ZnTSPP) as a model, we demonstrate that both the ECL intensity and the photostability of this emitter were significantly improved when it was trapped in pyridyl-bridged β-cyclodextrin dimer (Py(CD)); a synthetic enhancer that is ECL inactive. Through NMR characterization, we confirmed that ZnTSPP formed a clam-like inclusion complex involving pinning and pinching forces from the biocompatible container Py(CD). Up to a threefold increase in the ECL brightness of ZnTSPP was witnessed when it was encapsulated in β-CD. Absorption and emission spectroscopic data revealed that both the extended excitation lifetime and the restricted mobility of the guest contributed to the observed improvement in signal transduction within the host molecule. This bioinspired entrapment also led to a marked boost in ECL stability. With the aid of the newly identified coreactant HO, the hollow TSPP@Py(CD) system was employed to create a Zn-selective probe that was capable of sensitive and accurate zinc detection. The observed increase in ECL conversion and enhanced photophysical properties of this compact supramolecular assembly render it a novel template for enhancing ECL in analytical applications. Graphical abstract ᅟ.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-019-01634-3DOI Listing

Publication Analysis

Top Keywords

pinning pinching
8
zinc detection
8
increase ecl
8
ecl
7
enhanced electrochemiluminescent
4
electrochemiluminescent brightness
4
brightness stability
4
stability porphyrins
4
porphyrins supramolecular
4
supramolecular pinning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!