Vitamin A inhibits the action of LPS on the intestinal epithelial barrier function and tight junction proteins.

Food Funct

Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.

Published: February 2019

Inflammation caused by either intrinsic or extrinsic toxins results in intestinal barrier dysfunction, contributing to inflammatory bowel disease (IBD) and other diseases. Vitamin A is a widely used food supplement although its mechanistic effect on intestinal structures is largely unknown. The goal of this study was to explore the mechanism by investigating the influence of vitamin A on the intestinal barrier function, represented by tight junctions. IPEC-J2 cells were differentiated on transwell inserts and used as a model of intestinal barrier permeability. Transepithelial electrical resistance (TEER) was used as an indicator of monolayer integrity and paracellular permeability. Western blot and the reverse transcriptase-polymerase chain reaction were used to assess the protein and mRNA expression of tight junction proteins. Immunofluorescence microscopy was used to evaluate the localization and expression of tight junctions. Differentiated cells were treated with a vehicle control (Ctrl), inflammatory stimulus (1 μg mL-1 LPS), LPS co-treatment with 0.1 μmol L-1 Vitamin A (1 μg mL-1 LPS + 0.1 μmol L-1 VA) and 0.1 μmol L-1 Vitamin A. LPS significantly decreased TEER by 24 hours, continuing this effect to 48 hours after application. Vitamin A alleviated the LPS-induced decrease of TEER from 12 hours to 48 hours, while Vitamin A alone enhanced TEER, indicating that Vitamin A attenuated LPS-induced intestinal epithelium permeability. Mechanistically, different concentrations of Vitamin A (0-20 μmol L-1) enhanced tight junction protein markers including Zo-1, Occludin and Claudin-1 both at protein and mRNA levels with an optimized dose of 0.1 μmol L-1. Immunofluorescence results demonstrated that majority of Zo-1 and Claudin-1 is located at the tight junctions, as we expected. LPS reduced the expression of these proteins and Vitamin A reversed LPS-reduced expression of these proteins, consistent with the results of western blot. In conclusion, Vitamin A improves the intestinal barrier function and reverses LPS-induced intestinal barrier damage via enhancing the expression of tight junction proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8fo01123kDOI Listing

Publication Analysis

Top Keywords

intestinal barrier
20
μmol l-1
20
tight junction
16
barrier function
12
junction proteins
12
tight junctions
12
expression tight
12
vitamin
11
intestinal
8
western blot
8

Similar Publications

Introduction: Ulcerative colitis (UC) is a chronic inflammatory disease. Patients with UC typically exhibit disruption of the Treg/Th17 immune axis, but its exact mechanism is still unclear.

Methods: This study first analyzed RNA- seq data from public databases of humans and mice, and cytology experiments were conducted to induce or inhibit the expression of SIRT1.

View Article and Find Full Text PDF

The last decennia have witnessed spectacular advances in our knowledge about the influence of the gut microbiome on the development of a wide swathe of diseases that extend beyond the digestive tract, including skin diseases like psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. The novel concept of the gut-skin axis delves into how skin diseases and the microbiome interact through inflammatory mediators, metabolites, and the intestinal barrier. Elucidating the effects of the gut microbiome on skin health could provide new opportunities for developing innovative treatments for dermatological diseases.

View Article and Find Full Text PDF

MC-LR induces and exacerbates Colitis in mice through the JAK1/STAT3 pathway.

J Toxicol Environ Health A

January 2025

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.

Inflammatory bowel disease (IBD) is a complex gastrointestinal disorder attributed to genetic and environmental factors. Microcystin-leucine-arginine (MC-LR) is an environmental toxin that accumulates in the gut and produces intestinal damage. The aim of this study was to investigate the effects of exposure to MC-LR on development and progression of IBD as well examine the underlying mechanisms of microcystin-initiated tissue damage.

View Article and Find Full Text PDF

The incidence of obesity is increasing annually worldwide. A high-fat diet (HFD) causes intestinal barrier damage, but effective interventions are currently unavailable. Our previous work demonstrated the therapeutic effect of nobiletin on obese mice; thus, we hypothesized that nobiletin could reverse HFD-induced damage to the intestinal barrier.

View Article and Find Full Text PDF

Human breast milk-derived exosomes and their positive role on neonatal intestinal health.

Pediatr Res

January 2025

Department of Pediatrics, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510623, China.

Although the role of breast milk in promoting neonatal growth and maintaining intestinal homeostasis is well established, underlying mechanisms by which it protects the intestine from damage remain to be elucidated. Human breast milk-derived exosomes (HMDEs) are newly discovered active signaling vesicles with a diameter of 30-150 nm, which are key carriers of biological information exchange between mother and child. In addition, due to their ability to cross the gastrointestinal barrier, low immunogenicity, good biocompatibility and stability, HMDEs play an important role in regulating intestinal barrier integrity in newborns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!