AI Article Synopsis

  • The secretion of pituitary hormones shows daily fluctuations influenced by circadian rhythms, and this process is affected by thyroid hormone levels in conditions of hypo- and hyperthyroidism.
  • Male Wistar rats were used to study these interactions, with groups designated as control, hypothyroid, and hyperthyroid, and their anterior pituitary glands were analyzed for gene expression changes every three hours over a 24-hour period.
  • Results indicated that hyperthyroidism enhanced the expression of key clock genes while hypothyroidism disrupted circadian patterns and hormone expression, highlighting how thyroid hormone levels impact pituitary function and circadian regulation.

Article Abstract

Background: The secretion of pituitary hormones oscillates throughout the 24-hour period, indicating that circadian clock-mediated mechanisms regulate this process in the gland. Additionally, pituitary hormone synthesis has been shown to be altered in hypo- and hyperthyroidism. Although thyroid hormones can modulate the other peripheral clocks, the interaction between thyroid hormone levels and circadian clock gene expression in the anterior pituitary has yet to be elucidated.

Methods: Male Wistar rats were divided into three groups: control, hypothyroid, and hyperthyroid. Following the experimental procedures, animals were euthanized every three hours over the course of a 24-hour period. The anterior pituitary glands were excised and processed for mRNA expression analysis by quantitative reverse transcriptase polymerase chain reaction. One- and two-way analysis of variance as well as cosinor analysis were used to evaluate the time-of-day-dependent differential expression for each gene in each experimental group and their interactions.

Results: Hyperthyroidism increased the mRNA expression of core clock genes and thyrotrophic embryonic factor (Tef), as well as the mesor and amplitude of brain and muscle Arnt-like protein-1 (Bmal1) and the mesor of nuclear receptor subfamily 1 (Nr1d1) group D member 1, when compared to euthyroid animals. Hypothyroidism disrupted the circadian expression pattern of Bmal1 and period circadian regulator 2 (Per2) and decreased the mesor of Nr1d1 and Tef. Furthermore, it was observed that the pituitary content of Dio2 mRNA was unaltered in hyperthyroidism but substantially elevated in hypothyroidism during the light phase. The upregulated expression was associated with an increased mesor and amplitude, along with an advanced acrophase. The gene expression of all the pituitary hormones was found to be altered in hypo- and hyperthyroidism. Moreover, prolactin (Prl) and luteinizing hormone beta subunit (Lhb) displayed circadian expression patterns in the control group, which were disrupted in both the hypo- and hyperthyroid states.

Conclusion: Taken together, the data demonstrate that hypo- and hyperthyroidism alter circadian clock gene expression in the anterior pituitary. This suggests that triiodothyronine plays an important role in the regulation of pituitary gland homeostasis, which could ultimately influence the rhythmic synthesis and/or secretion of all the anterior pituitary hormones.

Download full-text PDF

Source
http://dx.doi.org/10.1089/thy.2018.0578DOI Listing

Publication Analysis

Top Keywords

anterior pituitary
16
circadian clock
12
pituitary hormones
12
hypo- hyperthyroidism
12
gene expression
12
pituitary
10
expression
10
pituitary hormone
8
24-hour period
8
altered hypo-
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!