Background: Patients with schizophrenia were found to be less successful at emotion recognition tasks (ERTs) than healthy individuals. There is a debate surrounding whether this deficit is permanent or temporary. The current study aims to assess how emotion recognition skills are affected by treatment processes and during the course of the disease and also to determine the relation of this change with clinical assessment scales, other cognitive functions, and quantitative electroencephalography (QEEG).
Materials And Methods: Twenty-four inpatients with treatment-resistant schizophrenia have been included in the study. Patients were assessed before beginning clozapine and 6 months later. During both assessments, clinical evaluation scales (Positive and Negative Syndrome Scale and Global Assessment of Functioning), Cambridge Neuropsychological Test Automated Battery (CANTAB) for schizophrenia which is used for assessment of cognitive functions were used. Electroencephalography (EEG) monitorings were performed only once before treatment. In this study, CANTAB ERT was used for emotion recognition.
Results: There was no statistically significant change in the emotion recognition when the first and final ERTs were compared. There was a moderately positive relationship between emotional recognition and functioning ( = 0.65, < 0.05). Cognitive functions such as visual memory, attention, flexible thinking, and planning were found to be in correlation with emotion recognition. Furthermore, slow waves such as delta and theta activities obtained from frontal, temporoparietal, and occipital regions were associated with emotion recognition.
Conclusion: The current study supports that emotion recognition deficits are long-term stable features of schizophrenia, slow-wave electrical activity in the frontal, temporoparietal, and occipital areas in QEEG, and cognitive functions such as visual memory, attention, flexible thinking, and planning are found to be correlated with emotion recognition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341926 | PMC |
http://dx.doi.org/10.4103/psychiatry.IndianJPsychiatry_307_18 | DOI Listing |
Cogn Neurodyn
December 2025
Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, TamilNadu India.
Emotion recognition plays a crucial role in brain-computer interfaces (BCI) which helps to identify and classify human emotions as positive, negative, and neutral. Emotion analysis in BCI maintains a substantial perspective in distinct fields such as healthcare, education, gaming, and human-computer interaction. In healthcare, emotion analysis based on electroencephalography (EEG) signals is deployed to provide personalized support for patients with autism or mood disorders.
View Article and Find Full Text PDFJMIR Ment Health
January 2025
The Samueli Initiative for Responsible AI in Medicine, Tel Aviv University, Tel Aviv, Israel.
Generative artificial intelligence (GenAI) shows potential for personalized care, psychoeducation, and even crisis prediction in mental health, yet responsible use requires ethical consideration and deliberation and perhaps even governance. This is the first published theme issue focused on responsible GenAI in mental health. It brings together evidence and insights on GenAI's capabilities, such as emotion recognition, therapy-session summarization, and risk assessment, while highlighting the sensitive nature of mental health data and the need for rigorous validation.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
Background: Cognitive training (CT) has been one of the important non-pharmaceutical interventions that could delay cognitive decline. Currently, no definite CT methods are available. Furthermore, little attention has been paid to the effect of CT on mood and instrumental activities of daily living (IADL).
View Article and Find Full Text PDFBrain Res
January 2025
epartment of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China. Electronic address:
Whisker deprivation at different stages of early development results in varied behavioral outcomes. However, there is a notable lack of systematic studies evaluating the specific effects of whisker deprivation from postnatal day 0 (P0) to P14 on adolescent behavioral performance in mice. To investigate these effects, C57BL/6J mice underwent whisker deprivation from P0 to P14 and were subsequently assessed at 5 weeks of age using a battery of tests: motor skills were evaluated using open field test; emotional behavior was evaluated using a series of anxiety- and depression-related behavioral tests; cognitive function was examined via novel location and object recognition tests; and social interactions were analyzed using three-chamber social interaction test.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Psychology, The Affiliated Hospital of Jiangnan University, 214151 Wuxi, Jiangsu, China.
Background: Deficits in emotion recognition have been shown to be closely related to social-cognitive functioning in schizophrenic. This study aimed to investigate the event-related potential (ERP) characteristics of social perception in schizophrenia patients and to explore the neural mechanisms underlying these abnormal cognitive processes related to social perception.
Methods: Participants included 33 schizophrenia patients and 35 healthy controls (HCs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!