Single cells migrate in a myriad of physiological contexts, such as tissue patrolling by immune cells, and during neurogenesis and tissue remodeling, as well as in metastasis, the spread of cancer cells. To understand the basic principles of single-cell migration, a reductionist approach can be taken. This aims to control and deconstruct the complexity of different cellular microenvironments into simpler elementary constrains that can be recombined together. This approach is the cell microenvironment equivalent of reconstituted systems that combine elementary molecular players to understand cellular functions. In this Cell Science at a Glance article and accompanying poster, we present selected experimental setups that mimic different events that cells undergo during migration These include polydimethylsiloxane (PDMS) devices to deform whole cells or organelles, micro patterning, nano-fabricated structures like grooves, and compartmentalized collagen chambers with chemical gradients. We also outline the main contribution of each technique to the understanding of different aspects of single-cell migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.225565 | DOI Listing |
J Cell Physiol
January 2025
Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
In this study, we explored the impact of different biomechanical loadings on lumbar spine motion segments, particularly concerning intervertebral disc degeneration (IVDD). We aimed to uncover the cellular milieu and mechanisms driving ossification in the nucleus pulposus (NP) during IVDD, a process whose underlying mechanisms have remained elusive. The study involved the examination of fresh NP tissue from the L3-S1 segment of five individuals, either with IVDD or healthy.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2025
Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA.
Intestinal ischemic injury damages the epithelial barrier predisposes patients to life-threatening sepsis unless that barrier is rapidly restored. There is an age-dependency of intestinal recovery in that neonates are the most susceptible to succumb to disease of the intestinal barrier versus older patients. We have developed a pig model that demonstrates age-dependent failure of intestinal barrier restitution in neonatal pigs which can be rescued by the direct application of juvenile pig mucosal tissue, but the mechanisms of rescue remain undefined.
View Article and Find Full Text PDFCells
January 2025
Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
Macrophages play important roles in metabolic dysfunction-associated steatohepatitis (MASH), an advanced and inflammatory stage of metabolic dysfunction-associated steatotic liver disease (MASLD). In humans and mice, the cellular heterogeneity and diverse function of hepatic macrophages in MASH have been investigated by single cell RNA sequencing (scRNA-seq). However, little is known about their roles in rats.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Preventive Medicine, Shantou University Medical College, Shantou, China.
Background: Colon adenocarcinoma (COAD) is a malignancy with a high mortality rate and complex biological characteristics and heterogeneity, which poses challenges for clinical treatment. Anoikis is a type of programmed cell death that occurs when cells lose their attachment to the extracellular matrix (ECM), and it plays a crucial role in tumor metastasis. However, the specific biological link between anoikis and COAD, as well as its mechanisms in tumor progression, remains unclear, making it a potential new direction for therapeutic strategy research.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.
Background: Genome-wide association studies (GWAS) provide a powerful method for identifying the loci and genes that contribute to disease. However, in many cases, the specific cell types and states that confer disease risk through these genes remain unknown. Determining this relationship is crucial for identifying pathogenic processes and developing therapeutic strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!