Bone metastases are a frequent complication of cancer that are associated with considerable morbidity. Current treatments may temporarily palliate the symptoms of bone metastases but often fail to delay their progression. Bones provide a permissive environment because they are characterized by dynamic turnover, secreting factors required for bone maintenance but also stimulating the establishment and growth of metastases. Insulin-like growth factors (IGF) are the most abundant growth factors in bone and are required for normal skeletal development and function. Via activation of the IGF-1 receptors (IGF-1R) and variant insulin receptors, IGFs promote cancer progression, aggressiveness, and treatment resistance. Of specific relevance to bone biology, IGFs contribute to the homing, dormancy, colonization, and expansion of bone metastases. Furthermore, preclinical evidence suggests that tumor cells can be primed to metastasize to bone by a high IGF-1 environment in the primary tumor, suggesting that bone metastases may reflect IGF dependency. Therapeutic targeting of the IGF axis may therefore provide an effective method for treating bone metastases. Indeed, anti-IGF-1R antibodies, IGF-1R tyrosine kinase inhibitors, and anti-IGF-1/2 antibodies have demonstrated antitumor activity in preclinical models of prostate and breast cancer metastases, either alone or in combination with other agents. Several studies suggest that such treatments can inhibit bone metastases without affecting growth of the primary tumor. Although previous trials of anti-IGF-1R drugs have generated negative results in unselected patients, these considerations suggest that future clinical trials of IGF-targeted agents may be warranted in patients with bone metastases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-18-2697 | DOI Listing |
Oper Orthop Traumatol
December 2024
Department for Orthopaedic and Trauma Surgery, Lucerne Cantonal Hospital LUKS, Spitalstrasse, Lucerne, Switzerland.
Objective: To maximize local tumor control, stabilize affected bones, and preserve or replace joints with minimal interventional burden, thereby enhancing quality of life for empowered living.
Indications: Suitable for patients with bone metastases, particularly those with severe pain and/or fractures and appropriate life expectancy.
Contraindications: In primary bone tumors, refer to the sarcoma surgery team for evaluation of wide resection.
J Am Acad Orthop Surg
December 2024
From the Vagelos College of Physicians of Surgeons, Columbia University, New York, NY (Garcia), and Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, NY (Tyler).
Introduction: The odds of metastatic disease at diagnosis of bone (BS) and soft-tissue sarcomas (STS) of the extremities and pelvis may vary among patients due to several factors. There is limited research comparing the rates of metastatic disease at diagnosis in patients from different demographic and socioeconomic backgrounds.
Methods: Patients with a primary BS or STS of the extremity or pelvis were identified using International Classification of Diseases codes.
J Palliat Med
December 2024
Department of Radiation Oncology, Saitama Medical center, Saitama, Japan.
Utility values of responders and nonresponders are essential inputs in cost-effectiveness studies of radiation therapy for painful bone metastases but, to our knowledge, they have not been reported separately. We sought to determine the utility values of responders and nonresponders using data from a prospective observational study on bone metastases. The original prospective observational study was conducted at 26 centers in Japan.
View Article and Find Full Text PDFCurr Oncol
December 2024
Radiation Oncology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy.
A 71-year-old male ex-smoker presented in October 2021 to our department with a brain and bone metastatic adenocarcinoma NSCLC. PDL1, ROS, EGFR, and ALK were negative. He underwent stereotactic radiotherapy for brain metastases.
View Article and Find Full Text PDFCurr Oncol
November 2024
Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan.
Bone-modifying agents (BMAs) have been widely used to reduce skeletal-related events, including pathological fractures. Herein, we aimed to clarify the incidence of pathological fractures caused by high-risk femoral bone metastases after palliative radiotherapy (RT) in the BMA era and evaluate the necessity of prophylactic surgical stabilization. We assessed 90 patients with high-risk femoral bone metastases, indicated by Mirels' scores ≥ 8, without pathological fractures and surgical fixations, who received palliative RT at our institution between January 2009 and December 2018.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!