Background: Hyper-activation of TGF-β signaling is critically involved in progression of hepatocellular carcinoma (HCC). However, the events that contribute to the dysregulation of TGF-β pathway in HCC, especially at the post-translational level, are not well understood.

Methods: Associations of deubiquitinase POH1 with TGF-β signaling activity and the outcomes of HCC patients were examined by data mining of online HCC datasets, immunohistochemistry analyses using human HCC specimens, spearman correlation and survival analyses. The effects of POH1 on the ubiquitination and stability of the TGF-β receptors (TGFBR1 and TGFBR2) and the activation of downstream effectors were tested by western blotting. Primary mouse liver tissues from polyinosinic:polycytidylic acid (poly I:C)- treated Mx-Cre+, poh1 mice and control mice were used to detect the TGF-β receptors. The metastatic-related capabilities of HCC cells were studied in vitro and in mice.

Findings: Here we show that POH1 is a critical regulator of TGF-β signaling and promotes tumor metastasis. Integrative analyses of HCC subgroups classified with unsupervised transcriptome clustering of the TGF-β response, metastatic potential and outcomes, reveal that POH1 expression positively correlates with activities of TGF-β signaling in tumors and with malignant disease progression. Functionally, POH1 intensifies TGF-β signaling delivery and, as a consequence, promotes HCC cell metastatic properties both in vitro and in vivo. The expression of the TGF-β receptors was severely downregulated in POH1-deficient mouse hepatocytes. Mechanistically, POH1 deubiquitinates the TGF-β receptors and CAV1, therefore negatively regulates lysosome pathway-mediated turnover of TGF-β receptors.

Conclusion: Our study highlights the pathological significance of aberrantly expressed POH1 in TGF-β signaling hyperactivation and aggressive progression in HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441868PMC
http://dx.doi.org/10.1016/j.ebiom.2019.01.058DOI Listing

Publication Analysis

Top Keywords

tgf-β signaling
28
tgf-β receptors
20
tgf-β
15
poh1
9
hcc
9
hepatocellular carcinoma
8
poh1 tgf-β
8
signaling
7
receptors
5
poh1 contributes
4

Similar Publications

Novel nutrition strategies in gastric and esophageal cancer.

Expert Rev Gastroenterol Hepatol

January 2025

Department of Surgery, Trinity St. James's Cancer Institute, Dublin, Ireland.

Introduction: Advances in treatment strategies for gastric and esophageal cancer have led to improved long-term outcomes, however the local and systemic effects of tumor growth, neoadjuvant therapies and surgery, results in specific nutritional challenges. Comprehensive nutritional evaluation and support represents a core component of multidisciplinary holistic care for this patient population.

Areas Covered: This review provides a detailed overview of the nutritional challenges in gastric and esophageal cancer, with a focus on malignant obstruction, preoperative optimization and nutrition in survivorship.

View Article and Find Full Text PDF

Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.

View Article and Find Full Text PDF

The transport of metabolites across the inner mitochondrial membrane (IMM) is crucial for maintaining energy balance and efficient distribution of metabolic intermediates between cellular compartments. Under abiotic stress, mitochondrial function becomes particularly critical, activating complex signaling pathways essential for plant stress responses. These pathways modulate stress-responsive gene expression, influencing key physiological processes such as cell respiration and senescence, helping plants adapt to stress.

View Article and Find Full Text PDF

Mina53 catalyzes arginine demethylation of p53 to promote tumor growth.

Cell Rep

January 2025

Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China. Electronic address:

Arginine methylation is a common post-translational modification that plays critical roles in many biological processes. However, the existence of arginine demethylases that remove the modification has not been fully established. Here, we report that Myc-induced nuclear antigen 53 (Mina53), a member of the jumonji C (JmjC) protein family, is an arginine demethylase.

View Article and Find Full Text PDF

Cytosolic DNA composition is determined by genomic instability mechanism and regulates dendritic cell-mediated anti-tumor immunity.

Cell Rep

January 2025

Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada. Electronic address:

Patients with colorectal cancers (CRCs) that have microsatellite instability (MSI) (MSI CRCs) face a better prognosis than those with the more common chromosomal instability (CIN) subtype (CIN CRCs) due to improved T cell-mediated anti-tumor immune responses. Previous investigations identified the cytosolic DNA (cyDNA) sensor STING as necessary for chemokine-mediated T cell recruitment in MSI CRCs. Here, we find that cyDNA from MSI CRC cells is inherently more capable of inducing STING activation and improves cytotoxic T cell activation by dendritic cells (DCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!