Successful reproduction in female mammals is precisely timed and must be able to withstand the metabolic demand of pregnancy and lactation. We show that kisspeptin-expressing neurons in the arcuate hypothalamus (Kiss1) of female mice control the daily timing of food intake, along with the circadian regulation of locomotor activity, sleep, and core body temperature. Toxin-induced silencing of Kiss1 neurons shifts wakefulness and food consumption to the light phase and induces weight gain. Toxin-silenced mice are less physically active and have attenuated temperature rhythms. Because the rhythm of the master clock in the suprachiasmatic nucleus (SCN) appears to be intact, we hypothesize that Kiss1 neurons signal to neurons downstream of the master clock to modulate the output of the SCN. We conclude that, in addition to their well-established role in regulating fertility, Kiss1 neurons are a critical component of the hypothalamic circadian oscillator network that times overt rhythms of physiology and behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147454 | PMC |
http://dx.doi.org/10.1016/j.cub.2019.01.022 | DOI Listing |
J Neurosci
January 2025
Laboratory of Reproductive Neurobiology, Hun-Ren Institute of Experimental Medicine, Budapest, 1083 Hungary;
While hypothalamic kisspeptin (KP) neurons play well-established roles in the estrogen-dependent regulation of reproduction, little is known about extrahypothalamic KP-producing (KP) neurons of the lateral septum. As established previously, expression in this region is low and regulated by estrogen receptor- and GABA receptor-dependent mechanisms. Our present experiments on knock-in mice revealed that transgene expression in the LS begins at P33-36 in females and P40-45 in males and is stimulated by estrogen receptor signaling.
View Article and Find Full Text PDFMetabolism
December 2024
Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain. Electronic address:
Female reproduction is highly sensitive to body energy stores; persistent energy deficit, as seen in anorexia or strenuous exercise, is known to suppress ovulation via ill-defined mechanisms. We report herein that hypothalamic SIRT1, a key component of the epigenetic machinery that links nutritional status and puberty onset via modulation of Kiss1, plays a critical role in the control of the preovulatory surge of gonadotropins, i.e.
View Article and Find Full Text PDFCell Biosci
December 2024
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, USA.
Mammalian reproduction requires that nursing mothers transfer large amounts of calcium to their offspring through milk. Meeting this demand requires the activation of a brain-breast-bone circuit during lactation that coordinates changes in systemic hormones, dietary calcium intake, skeletal turnover, and calcium transport into milk. Classically, increased bone resorption via increased parathyroid hormone-related protein and low estrogen levels is the main source of calcium for milk production during lactation.
View Article and Find Full Text PDFNeurosci Lett
January 2025
Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan.
Kisspeptin and galanin-like peptide (GALP) neurons in the hypothalamic arcuate nucleus (ARC) are involved in gonadotropin-releasing hormone (GnRH) neuron-mediated pulsatile luteinizing hormone (LH) secretion. Zucker fatty (ZF) rats display a leptin receptor gene abnormality and suppressed pulsatile LH secretion. ZF rats reportedly exhibit low hypothalamic GALP and kisspeptin expression, and GALP administration induces LH release in ZF rats.
View Article and Find Full Text PDFElife
December 2024
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States.
Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1 neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!