Recent advances in medicine and life-expectancy gains have fueled multidisciplinary research into the limits of human lifespan [1-3]. Ultimately, how long humans can live for may depend on selection favoring extended longevity in our evolutionary past [4]. Human females have an unusually extended post-reproductive lifespan, which has been explained by the fitness benefits provided from helping to raise grandchildren following menopause [5, 6]. However, formal tests of whether such grandmothering benefits wane with grandmother age and explain the observed length of post-reproductive lifespan are missing. This is critical for understanding prevailing selection pressures on longevity but to date has been overlooked as a possible mechanism driving the evolution of lifespan. Here, we use extensive data from pre-industrial humans to show that fitness gains from grandmothering are dependent on grandmother age, affecting selection on the length of post-reproductive lifespan. We find both opportunities and ability to help grandchildren declined with age, while the hazard of death of women increased greatly in their late 60s and 70s compared to menopausal ages, together implying waning selection on subsequent longevity. The presence of maternal grandmothers aged 50-75 increased grandchild survival after weaning, confirming the fitness advantage of post-reproductive lifespan. However, co-residence with paternal grandmothers aged 75+ was detrimental to grandchild survival, with those grandmothers close to death and presumably in poorer health particularly associated with lower grandchild survival. The age limitations of gaining inclusive fitness from grandmothering suggests that grandmothering can select for post-reproductive longevity only up to a certain point.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2018.12.052DOI Listing

Publication Analysis

Top Keywords

post-reproductive lifespan
20
grandchild survival
12
fitness benefits
8
grandmother age
8
length post-reproductive
8
grandmothers aged
8
lifespan
7
post-reproductive
6
limits fitness
4
benefits prolonged
4

Similar Publications

Cetacean brains are uniquely adapted to diving, but can be affected by diseases and exposure to toxins, triggering neurodegenerative processes that may cause stranding. Some species exhibit a significant post-reproductive lifespan (PRLS), increasing the likelihood of observing cumulative and age-related pathology. Immunohistochemistry against amyloid-β and hyperphosphorylated tau proteins is increasingly implemented to assess Alzheimer's Disease-like neuropathology in cetaceans, but comparisons between geographically distinct populations, animals of different age groups, sex, and with concomitant pathologies are lacking.

View Article and Find Full Text PDF

Multigenerational analysis of reproductive timing and life cycle parameters in the marine rotifer Brachionus plicatilis.

Mar Pollut Bull

December 2024

Department of Food and Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea. Electronic address:

Reproductive timing in organisms can influence reproductive success and longevity, yet its long-term effects remain underexplored. This study monitored the first- and last-born offspring of Brachionus plicatilis across five generations to examine the impact of breeding timing on fertility and longevity. The last-born group produced more offspring in the F1 and F2 generations.

View Article and Find Full Text PDF

Humans were long thought to be the only mammal to experience menopause, the permanent cessation of reproduction followed by a long post-reproductive lifespan. More recently, evidence has been found for the existence of menopause in other long-lived mammals, including chimpanzees and gorillas. However, orangutans, which have the longest interbirth interval of any primate, have rarely been studied in this period of their lives.

View Article and Find Full Text PDF

Endocrine Dyscrasia in the Etiology and Therapy of Alzheimer's Disease.

J Alzheimers Dis

September 2024

Geriatric Research, Education and Clinical Center, Veterans Administration Hospital and Department of Medicine, University of Wisconsin, Madison, WI, USA.

The increase in the incidence of dementia over the last century correlates strongly with the increases in post-reproductive lifespan during this time. As post-reproductive lifespan continues to increase it is likely that the incidence of dementia will also increase unless therapies are developed to prevent, slow or cure dementia. A growing body of evidence implicates age-related endocrine dyscrasia and the length of time that the brain is subjected to this endocrine dyscrasia, as a key causal event leading to the cognitive decline associated with aging and Alzheimer's disease (AD), the major form of dementia in our society.

View Article and Find Full Text PDF

Background & Aims: Unhealthy lifestyles, such as chronic consumption of a Western Diet (WD), have been associated with increased systemic inflammation and oxidative stress (OS), a condition that may favour cognitive dysfunctions during aging. Polyphenols, such as rosmarinic acid (RA) may buffer low-grade inflammation and OS, characterizing the aging brain that is sustained by WD, promoting healthspan. The aim of this study was to evaluate the ability of RA to prevent cognitive decline in a mouse model of WD-driven unhealthy aging and to gain knowledge on the specific molecular pathways modulated within the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!