Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ensiling of sugarcane trash (SCT) and sugarcane stalks (SCS) was studied to assess the effects of molasses (MOL) and lactic acid bacteria (LAB) inoculant on methane potential. The experiment was run for 70 days and monitoring parameters were analyzed at days 0, 5, 15 and 70. Biochemical methane potential (BMP) tests performed with fresh and ensiled material at day 70 showed an increase in methane potential by 24.0%, 23.4%, 1.7% and 71.1% for SCS, SCT, SCT and SCT, respectively. Such improved performance is explained by the formation of organic acids (mostly acetate and lactate) which were able to decrease the pH of the silages from 5.7-5.9 to 3.8-4.2 for all SCT treatments and from 5.9 up to 3.4 for SCS treatment. Thus, the ensiling process provided similar effects to a pre-treatment at low acid concentrations, which in turn improved the digestibility of the cellulosic biomass for methane production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2019.01.143 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!