Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6676031 | PMC |
http://dx.doi.org/10.4097/kja.d.19.00029 | DOI Listing |
MAGMA
January 2025
Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, 28359, Bremen, Germany.
Objectives: Caffeine, a known neurostimulant and adenosine antagonist, affects brain physiology by decreasing cerebral blood flow. It interacts with adenosine receptors to induce vasoconstriction, potentially disrupting brain homeostasis. However, the impact of caffeine on blood-brain barrier (BBB) permeability to water remains underexplored.
View Article and Find Full Text PDFViruses
January 2025
Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA.
Glioblastoma multiforme (GBM) is a devastating, aggressive primary brain tumor with poor patient outcomes and a five-year survival of less than 10%. Significant limitations to effective GBM treatment include poor drug delivery across the blood-brain barrier, drug resistance, and complex genetic tumor alterations. Gene therapy uses a mechanism different from other GBM therapies to reduce tumor growth and enhance antitumor immunity.
View Article and Find Full Text PDFPharmaceutics
January 2025
CDL Research, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.
View Article and Find Full Text PDFPharmaceutics
January 2025
Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.
Brain diseases pose significant treatment challenges due to the restrictive nature of the blood-brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with macromolecules for brain diseases.
View Article and Find Full Text PDFPharmaceutics
January 2025
MyBiotech GmbH, Industriestraße 1B, 66802 Überherrn, Germany.
: Drug delivery systems (DDSs) offer efficient treatment solutions to challenging diseases such as central nervous system (CNS) diseases by bypassing biological barriers such as the blood-brain barrier (BBB). Among DDSs, polymeric nanoparticles (NPs), particularly poly(lactic-co-glycolic acid) (PLGA) NPs, hold an outstanding position due to their biocompatible and biodegradable qualities. Despite their potential, the translation of PLGA NPs from laboratory-scale production to clinical applications remains a significant challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!