: Solid lipid nanoparticles (SLNs) are attractive drug delivery systems for lipophilic molecules like curcumin (CURC) with low chemical stability. : A simple, innovative, and cold-operating method, named "cold dilution of microemulsion" is developed by the authors to produce SLNs. An oil-in-water microemulsion (µE), whose disperse phase consisted of a solution of trilaurin in a partially water-miscible solvent, was prepared after mutually saturating solvent and water. Trilaurin SLNs precipitated following solvent removal upon water dilution of the µE. After SLN characterization (mean size, Zeta potential, CURC entrapment efficiency, and over time stability), they were tested for in vitro cytotoxicity studies on pancreatic adenocarcinoma cell lines and for in vivo preliminary biodistribution studies in Wistar healthy rats. : CURC loaded SLNs (SLN-CURC) had mean diameters around 200 nm, were negatively charged, stable over time, and able to entrap CURC up to almost 90%, consequently improving its stability. SLN-CURC inhibited in vitro pancreatic carcinoma cell growth in concentration-dependent manner. Their in vivo intravenous administration suggested a possible long circulation. : These results, according to a concomitant study on chitosan-coated SLNs, confirm the possibility to apply the developed SLN-based delivery systems as a means to entrap CURC, to improve both its water dispersibility and chemical stability, facilitating its application in therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410061 | PMC |
http://dx.doi.org/10.3390/nano9020230 | DOI Listing |
Front Toxicol
January 2025
Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
Solid lipid nanoparticles (SLNs) have gained interest as drug delivery carriers due to their efficient cellular internalization and increased therapeutic effect of the loaded drug, with minimal side effects. Although recently several studies have shown the possibility to administer SLNs during pregnancy to vehicle mRNA to the placenta, data about the effect of premating exposure to SLNs on pregnancy outcome are scant. Considering that assumption of drug-delivering nanocarriers in reproductive age may potentially affect women's reproductive health, the aim of the present study was to evaluate whether repeated oral administration of SLNs to female mice prior to mating would influence key pregnancy outcomes.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, People's Republic of China.
Background: Dachaihu decoction (DCHD) is a common Chinese medicine formula against sepsis-induced acute lung injury (SALI). PANoptosis is a novel type of programmed cell death. Nevertheless, The mechanisms of DCHD against SALI via anti-PANoptosis remains unknown.
View Article and Find Full Text PDFLangmuir
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
Solid supported lipid bilayers (SLBs) serve as an excellent platform for biophysical studies. However, the formation of highly negatively charged SLBs on negatively charged surfaces remains a challenge due to electrostatic repulsion. Here, we study the effects of ionic strength and osmotic stress on the formation of highly negatively charged SLBs on the silica surface.
View Article and Find Full Text PDFIndian J Clin Biochem
January 2025
Department of Biochemistry, All India Institute of Medical Sciences Rishikesh, Rishikesh, 249203 India.
Liquid biopsy is gaining importance in oncology in the age of precision medicine. Extracellular vesicles (EVs), among other tumor-derived indicators, are isolated and analysed from bodily fluids. EVs are secreted by both healthy and cancerous cells and are lipid bilayer-enclosed particles that are diverse in size and molecular makeup.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA.
Oxidative stress (OS) refers to the disruption in the balance between free radical generation and antioxidant defenses, leading to potential tissue damage. Reactive oxygen species (ROS) can interact with biological components, triggering processes like protein oxidation, lipid peroxidation, or DNA damage, resulting in the generation of several volatile organic compounds (VOCs). Recently, VOCs provided new insight into cellular metabolism and can serve as potential biomarkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!