Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Elevated plasma branched-chain amino acids (BCAA) levels are often observed in obese insulin-resistant (IR) subjects and laboratory animals. A reduced capacity of the adipose tissues (AT) to catabolize BCAA has been proposed as an explanation, but it seems restricted to obesity models of genetically modified or high fat⁻fed rodents. We aimed to determine if plasma BCAA levels were increased in a model of IR without obesity and to explore the underlying mechanisms. Rats were fed with a standard diet, containing either starch or fructose. BCAA levels, body weight and composition were recorded before and after 5, 12, 30, or 45 days of feeding. Elevated blood BCAA levels were observed in our IR model with unaltered body weight and composition. No changes were observed in the liver or the AT, but instead an impaired capacity of the skeletal muscle to catabolize BCAA was observed, including reduced capacity for transamination and oxidative deamination. Although the elevated blood BCAA levels in the fructose-fed rat seem to be a common feature of the IR phenotype observed in obese subjects and high fat⁻fed animals, the mechanisms involved in such a metabolic phenomenon are different, likely involving the skeletal muscle BCAA metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412955 | PMC |
http://dx.doi.org/10.3390/nu11020355 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!