Simulation of ammonia (NH) volatilization by process-oriented biogeochemical models, such as the widely used DeNitrification DeComposition (DNDC), is an imperative need to identify the best management strategies that can improve nitrogen use efficiency in crop production while alleviating environmental pollution. However, scarce validation has been impeding the applicability of the DNDC for this purpose. Using the micrometeorological or wind tunnel-based observations of NH volatilization in 44 cases with at seven nationwide field sites in China, which were cultivated with summer maize and winter wheat in calcareous soils and applied with synthetic fertilizers, the DNDC was tested, modified, and evaluated in this study. The following major modifications were made in the model source codes. Primarily, pedo-transfer functions were introduced into the model to provide three soil hydraulic parameters that are required to simulate soil moisture. Then, the temperature effect on ammonium bicarbonate decomposition, which was originally missing, was parameterized. Finally, the effect of soil texture on ammonia volatilization from the liquid phase was re-parameterized while an adaption factor was set. Seven typical cases were involved in the model modifications and the other 37 independent cases were used for the modified model evaluation. Compared to the original model, the modified DNDC performed better. For instance, it showed a higher index of agreement of 0.77 versus 0.38, a higher modeling efficiency (Nash-Sutcliffe index) of 0.19 versus -0.52, and a greater determination coefficient (R) of 0.35 (p < 0.001) versus no available value (i.e., R ≤ 0) in the zero-intercept linear regression of the observed cumulative NH volatilizations during individual measurement periods against the simulations. Future studies are needed to further improve the modified DNDC so as to better simulate the effects of rainfall/irrigation and deep placement of fertilizers on NH volatilization from calcareous soils cultivated with upland crops.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.12.379DOI Listing

Publication Analysis

Top Keywords

ammonia volatilization
12
synthetic fertilizers
8
calcareous soils
8
model
6
dndc
5
modeling ammonia
4
volatilization
4
volatilization application
4
application synthetic
4
fertilizers cultivated
4

Similar Publications

Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.

View Article and Find Full Text PDF

How does forest fine root litter affect the agricultural soil NH and NO losses?

J Environ Manage

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:

In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.

View Article and Find Full Text PDF

Inclusion of Black Soldier Fly Larval Oil in Ruminant Diets Influences Feed Consumption, Nutritional Digestibility, Ruminal Characteristics, and Methane Estimation in Thai-Indigenous Steers.

J Anim Physiol Anim Nutr (Berl)

January 2025

Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.

The objective of this study was to examine the impact of black soldier fly larval oil (BSFO) on feed consumption, nutritional digestibility, ruminal characteristics and methane (CH) estimation in Thai-indigenous steers. Four male Thai native steers (Bos indicus) weighing 383 ± 9.0 kg were used in this investigation.

View Article and Find Full Text PDF

Ammonia (NH) volatilization caused by urea application has negative implications for human health, environmental quality, and the value of nitrogen fertilizers. It remains to be investigated how management strategies should be adopted to not only reduce NH volatilization but also improve nitrogen use efficiency (NUE) in the agriculture industry at present. Hence, a two-year field trial, including subplots, was conducted to simultaneously evaluate the effects of mulching treatments (NM: non-mulching; SM: straw mulching) and different fertilizer treatments (U: urea; U + NBPT: urea plus 1% N-(n-butyl) thiophosphoric triamide; U + CRU: the mixture of urea and controlled-release urea at a 3:7 ratio; U + OF: urea plus commercial organic fertilizer at a 3:7 ratio) on NH volatilization, crop production, and NUE in an oilseed rape-maize rotation system in the sloping farmland of purple soil in southwestern China between 2021 and 2023.

View Article and Find Full Text PDF

Owing to the massive refractory lignocellulose and leachate-organic loads, the stabilization of municipal solid waste (MSW) landfill is often prolonged, resulting in environmental burdens. Herein, various assembled multifunctional microbial inoculums (MMIs) were introduced into the semi-aerobic bioreactor landfill (SABL) to investigate the bioaugmentation impacts. Compared to control (CK) and other MMIs treatments (G1-G3), LD + LT + DM inoculation (G4) significantly increased volatile solids degradation (9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!