Delayed nitrate dispersion within a coastal aquifer provides constraints on land-use evolution and nitrate contamination in the past.

Sci Total Environ

Université de Corse Pascal Paoli, Faculté des Sciences et Techniques, Laboratoire d'Hydrogéologie, Campus Grimaldi, BP 52, F-20250 Corte, France; CNRS, UMR 6134, SPE, F-20250 Corte, France.

Published: December 2018

Identifying sources of anthropogenic pollution, and assessing the fate and residence time of pollutants in aquifers is important for the management of groundwater resources, and the ecological health of groundwater dependent ecosystems. This study investigates anthropogenic contamination in the shallow alluvial aquifer of the Marana-Casinca, hydraulically connected to the Biguglia lagoon (Corsica, France). A multi-tracer approach, combining geochemical and environmental isotopic data (δO-HO, δH-HO, H, δN-NO, δO-NO, δB), and groundwater residence-time tracers (H and CFCs) was carried out in 2016, and integrated with a study of land use evolution in the catchment during the last century. Groundwater NO concentrations, ranged between 2 mg/L and up to 30 mg/L, displaying the degradation of groundwater quality induced by anthropogenic activities (agricultural activities). Comparatively high δN-NO values (up to 19.7‰) in combination with δB values that were significantly lower (between 23‰ and 26‰) than the seawater background are indicative of sewage contamination. The ongoing deterioration of groundwater quality can be attributed to the uncontrolled urbanization development all over the alluvial plain, with numerous sewage leakages from the sanitation network and private sewage systems. Integration of contaminant and water-residence time data revealed a progressive accumulation of pollutants with time in the groundwater, particularly in areas with major anthropogenic pressure and slow dynamic groundwater flow. Our approach provides time-dependent insight into nitrogen pollution in the studied aquifer over the past decades, revealing a systematic change in the dominant NO source, from agricultural to sewage contamination. Yet, today's low groundwater quality is to large parts due to legacy pollution from land-use practices several decades ago, underlining the poor self-remediating capacity of this hydrosystem. Our results can be taken as warning that groundwater pollution that happened in the recent past, or today, may have dire impacts on the quality of groundwater-dependent ecosystems in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.06.375DOI Listing

Publication Analysis

Top Keywords

groundwater quality
12
groundwater
10
sewage contamination
8
delayed nitrate
4
nitrate dispersion
4
dispersion coastal
4
coastal aquifer
4
aquifer constraints
4
constraints land-use
4
land-use evolution
4

Similar Publications

Assessing drywell designs for managed aquifer recharge via canals and repurposed wells.

Sci Rep

January 2025

USDA, ARS, Sustainable Agricultural Water Systems (SAWS) Unit, UC Davis, 239 Hopkins Road, Davis, CA, 95616, USA.

This study explores innovative drywell designs for managed aquifer recharge (MAR) in agricultural settings, focusing on smaller diameter and deeper drywells, including the repurposing of dried or abandoned wells. Numerical simulations assessed the impact of drywell diameter (5-120 cm), depth (15-55 m), screen height, and subsurface heterogeneity on infiltration (I) and recharge (R) volumes over a one-year period under constant head conditions. Results indicate that smaller diameter drywells can effectively infiltrate and recharge significant water volumes.

View Article and Find Full Text PDF

Addressing Water Scarcity to Achieve Climate Resilience and Human Health.

Integr Environ Assess Manag

January 2025

Department of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco; San Francisco, California, 94158United States.

Water scarcity is projected to affect half of the world's population, gradually exacerbated by climate change. This article elaborates from a panel discussion at the 2023 United Nations Water Conference on Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Understanding and addressing water scarcity goes beyond hydrological water balances to also include societal and economic measures.

View Article and Find Full Text PDF

Mechanisms controlling spatial variability of geogenic ammonium in coastal aquifers: Insights from Holocene sedimentary evolution.

Water Res

January 2025

Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, Wuhan 430078, China.

The contamination of groundwater with geogenic ammonium (NH) across various geological backgrounds has garnered significant attention, particularly in coastal aquifer systems. However, there remains a gap in our understanding of the mechanisms governing the spatial variability of NH in coastal groundwater at a macroscopic scale. In this study, we collected the sediment samples from two boreholes corresponding to high-NH-N and low-NH-N groundwater.

View Article and Find Full Text PDF

Riverbank filtration: a frontline treatment method for surface and groundwater-African perspective.

Environ Monit Assess

January 2025

Institute of Environmental Engineering and Building Installations, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.

Riverbank filtration (RBF) has emerged as a crucial and functional water treatment method, particularly effective in improving surface water quality. This review is aimed at assessing the suitability of RBF in regions with limited access to clean water, such as Africa, where it has the potential to alleviate water scarcity and enhance water security. This review used various studies, highlighting the principles, applications, and advancements of RBF worldwide.

View Article and Find Full Text PDF

Groundwater toxicity and water level depletion are serious concerns today. Assessing groundwater quality (GWQ) is crucial for effective planning and management due to increasing demands for drinking and irrigation water. Therefore, this study aims to analyze groundwater hydrochemistry, variability, and factors influencing quality for drinking and irrigation purposes using indices and models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!