Verticillium wilt is the most serious olive disease worldwide. The olive-infecting Verticillium dahliae pathotypes have been classified as defoliating (D) and nondefoliating (ND), and the disease is mainly controlled in olive orchards by using resistant or tolerant cultivars. Limited information is available about the nature of resistance in most of the olive cultivars. In the present study, the phenolic responses of the susceptible to V. dahliae olive cv. Amfissis and the resistant cv. Koroneiki upon D and ND V. dahliae infection were monitored in relation to the fungal DNA levels in the vascular tissues with the purpose to explore the defense mechanisms of olive trees against V. dahliae. Quantitative polymerase chain reaction revealed that the decrease in symptom severity shown in Koroneiki trees was associated with significant reduction in the growth of both V. dahliae pathotypes in the vascular tissues compared with Amfissis. In Koroneiki trees, the levels of o-diphenols and verbascoside were positively associated with the DNA levels of the D and ND pathotypes. In addition, a positive association was observed between the levels of verbascoside and the fungal DNA level in Amfissis trees, whereas a negative association was revealed between the fungal DNA level and the total phenols and oleuropein content in both cultivars. The levels of verbascoside were clearly higher in Koroneiki trees compared with Amfissis trees, indicating for the first time in the literature the involvement of verbascoside in the defense mechanism of olive trees against V. dahliae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-94-9-1156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!