Knowledge of the movement of Gibberella zeae (Fusarium graminearum) from a local source of inoculum in infested cereal debris is critical to the management of Fusarium head blight (FHB) of wheat. Previous spatial dissemination and infection studies were unable to completely distinguish the contributions of released inocula from those of background inocula. Clones of G. zeae were released and recaptured in five wheat fields in New York and Virginia in 2007 and 2008. Amplified fragment length polymorphisms were used to track and unambiguously identify the released clones in heterogeneous populations of the fungus recovered from infected wheat spikes collected at 0, 3, 6, and ≥24 m from small-area sources of infested corn residues. The percent recovery of the released clones decreased significantly at fairly short distances from the inoculum sources. Isolates of G. zeae recovered at 0, 3, 6, and ≥24 m from the center of source areas shared 65, 19, 13, and 5% of the genotypes of the released clones, respectively. More importantly, the incidence of spike infection attributable to released clones averaged 15, 2, 1, and <1% at 0, 3, 6, and ≥24 m from source areas, respectively. Spike infection attributable to released clones decreased an average of 90% between 3 and 6 m from area sources of inoculum, and the spike infection potential of inocula dispersed at this range did not differ significantly from background sources. Our data suggest that FHB field experiments including a cereal debris variable should incorporate debris-free borders and interplots of at least 3 m and preferably 6 m to avoid significant interplot interference from spores originating from within-field debris.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-94-9-1151 | DOI Listing |
J Cell Physiol
January 2025
Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.
Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.
View Article and Find Full Text PDFClin Cancer Res
January 2025
University of Leeds, Leeds, United Kingdom.
Background: Effective treatment for patients with metastatic cancer is limited, particularly for colorectal cancer patients with metastatic liver lesions (mCRC), where accessibility to numerous tumours is essential for favourable clinical outcomes. Oncolytic viruses (OVs) selectively replicate in cancer cells; however, direct targeting of inaccessible lesions is limited when using conventional intravenous or intratumoural administration routes.
Methods: We conducted a multi-centre, dose-escalation, phase I study of vaccinia virus, TG6002, via intrahepatic artery (IHA) delivery in combination with the oral pro-drug 5-fluorocytosine to fifteen mCRC patients.
Mycopathologia
January 2025
Department of Clinical Microbiology, St. James Hospital, Dublin, Ireland.
Magnusiomyces capitatus is an environmental fungus found in soil, water, air, plants, and dairy products which may cause opportunistic infections in patients with haematological disorders resulting in high mortality rates. This series of the first reported cases in Ireland discusses investigation of two patients with underlying haematological disorders, hospitalised in the Irish National Adult Stem Cell Transplant Unit (NASCTU), who developed line-related fungaemias with M. capitatus within a three-month period.
View Article and Find Full Text PDFInsects
December 2024
Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente Recursos Naturales y Biodiversidad, Escuela de Ingeniería Agraria y Forestal, Universidad de León, Avenida de Portugal 41, 24009 León, Spain.
The poplar bark beetle (Coleoptera: Scolytidae) is a key pest of poplar trees (Malpighiales: Salicaceae, genus ) across northern Spain. However, among the more than 200 poplar clones available on the market, the clone USA 184-411 has the highest susceptibility to attacks. We tested the hypothesis that compounds released by the most susceptible poplar clone chemically mediate behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!