First Record and Complete Nucleotide Sequence of Alfalfa mosaic virus from Lavandula stoechas in Italy.

Plant Dis

Dipartimento di Scienze e Tecnologie Agroambientali, Patologia Vegetale, Alma Mater Studiorum, Bologna University, Viale G. Fanin 44-40127 Bologna, Italy.

Published: July 2010

During spring 2009, lavender plants (Lavandula stoechas L.) showing a bright yellow mosaic of calico type and light stunting were observed in a commercial nursery in Liguria Province in northern Italy. Of 300 plants inspected, ~2% were symptomatic. Preliminary observations of leaf sap with the transmission electron microscope revealed bacilliform virus-like particles in three symptomatic plants, whereas no virus-like particles were observed in asymptomatic plants. The same symptomatic plants were tested by double-antibody sandwich-ELISA with polyclonal antisera against Cucumber mosaic virus, Potato virus Y, Tobacco mosaic virus, and Alfalfa mosaic virus (AMV). All three plants reacted positively against AMV antibodies, but not the other antibodies. A crude sap extract obtained from a single symptomatic plant, hereafter referred to as the Lst isolate, was prepared by macerating 1 g of fresh leaves in 4 ml of sodium phosphate 0.03 M, containing 0.2% sodium diethyldithiocarbamate, 75 mg/ml of active charcoal, and traces of Carborundum (600 mesh). Sap extract was mechanically inoculated onto a set of herbaceous hosts. Inoculated plants were maintained in an insect-proof greenhouse with natural illumination and temperatures of 24 and 18°C day/night. Under these conditions, plants showed the following symptoms after 1 to 3 weeks: necrotic local lesions in bean (Phaseolus vulgaris L., cv. Borlotto) and cowpea (Vigna unguiculata L., cv. Black eye); necrotic local lesions followed by systemic necrosis in broad bean (Vicia faba L., cv. Super Simonia) and tomato (Solanum lycopersicum L., cv. San Marzano); and bright yellow mosaic (calico type) in basil (Ocimum basilicum L., cv. Gigante). To sequence the entire genome of the Lst isolate, total RNA was extracted from infected samples with the RNeasy Plant Mini Kit (Qiagen, Valencia, CA) and subjected to AMV-specific reverse transcription-PCR by using four primer pairs for each genomic RNA of overlapping oligonucleotides according to the complete genome sequence of AMV 425L isolate (GenBank No. L00163 for RNA1, X01572 for RNA2, and K03542 for RNA3). The 5'- and 3'-terminals regions of each RNA were amplified with the strategy described by Lozano et al. (1) and specific AMV oligonucleotides designed for the corresponding viral RNA. The complete genome of the AMV-Lst isolate comprised 3,643 nucleotides for RNA1 (No. FN667965), 2,593 nucleotides for RNA2 (No. FN667966), and 2,038 nucleotides for RNA3 (No. FN667967). Comparative sequence analyses revealed that the AMV-Lst isolate from Italy shared overall nucleotide sequence identities with the AMV isolate 425L of 97.1, 95.5, and 94.7% for RNA1, 2, and 3, respectively. P1 and P2 replicase genes and the movement protein and coat protein (CP) genes of AMV-Lst isolate showed, respectively, 97.2, 95.1, 96.2, and 97.8% identity with those from the 425L isolate. The AMV-Lst CP gene was shorter by nine nucleotides compared with the CP gene of 425L. A phylogenetic tree, obtained with neighbor-joining and maximum likelihood methods, showed that the Lst isolate grouped within subgroup I of AMV isolates confirmed that the differences between subgroups I and II correlate mainly with the geographic origin of isolates (2). Lst represents the first Italian isolate of AMV completely sequenced, and to our knowledge, this is the first report of this virus in L. stoechas. References: (1) G. Lozano et al. Arch. Virol. 151:581, 2006. (2) G. Parrella et al. Arch. Virol. 145:2659, 2000.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-94-7-0924ADOI Listing

Publication Analysis

Top Keywords

mosaic virus
16
lst isolate
12
amv-lst isolate
12
isolate
10
nucleotide sequence
8
alfalfa mosaic
8
lavandula stoechas
8
plants
8
bright yellow
8
yellow mosaic
8

Similar Publications

Screening for broad-spectrum resistance to Turnip mosaic virus.

Breed Sci

September 2024

Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, Sendai, Miyagi 980-8572, Japan.

Turnip mosaic virus (TuMV) poses a major threat to crops like Chinese cabbage, causing significant economic losses. A viable and effective strategy to manage such diseases is by improvement of genetic-based viral resistance. To achieve this, it is important to have detailed and wide-ranging genetic resources, necessitating genetic exploration.

View Article and Find Full Text PDF

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

The global human immunodeficiency virus 1 (HIV-1) pandemic is driven by the extraordinary genetic diversity of the virus, largely resulting from frequent recombination events. These events generate circulating recombinant forms (CRFs) and unique recombinant forms, which significantly contribute to the complexity of HIV-1 epidemiology, especially within key populations, such as men who have sex with men (MSM). Here, we identified three novel HIV-1 recombinant strains consisting of the CRF01_AE and CRF07_BC subtypes from HIV-positive MSM in Baoding City, Hebei Province, China.

View Article and Find Full Text PDF

Wheat viruses are major yield-reducing factors, with mixed infections causing substantial economic losses. Determining field virus populations is crucial for effective management and developing virus-resistant cultivars. This study utilized the high-throughput Oxford Nanopore sequencing technique (ONT) to characterize wheat viral populations in major wheat-growing counties of Kansas from 2019 to 2021.

View Article and Find Full Text PDF

A Survey of Wild Indigenous Orchid Populations in Western Australia Reveals Spillover of Exotic Viruses.

Viruses

January 2025

School of Medical, Molecular and Forensic Sciences, College of Environmental and Life Sciences, Murdoch University, 90 South Street, Perth 6150, Australia.

is a terrestrial orchid endemic to southwestern Australia. The virus status of has not been studied. Eighty-three samples from 16 populations were collected, and sequencing was used to identify RNA viruses from them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!