Chickpea plants with severe yellowing and tip wilting were observed in the Cap-Bon Region of Tunisia in 2006. The viral-like symptoms resulted in yield loss of approximately 25% in some fields. A total of 110 symptomatic chickpea plants was collected from nine chickpea fields and tested at the Virology Laboratory of ICARDA, Syria for eight legume viruses using tissue-blot immunoassay (TBIA) (3). Polyclonal antisera produced at the ICARDA Virology Laboratory were used to test for Chickpea chlorotic dwarf virus (genus Mastrevirus, family Geminiviridae), Broad bean stain virus (genus Comovirus, family Secoviridae), Broad bean mottle virus (genus Bromovirus, family Bromoviridae), and Bean yellow mosaic virus and Pea seed borne mosaic virus (genus Potyvirus, family Potyviridae). Antiserum to Beet mosaic virus (BtMV; genus Potyvirus, family Potyviridae) (AS-0143) was provided by the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). In addition, three monoclonal antibodies (MAb) were used to detect Faba bean necrotic yellows virus (FBNYV; genus Nanovirus, family Nanoviridae) (MAb 3-2E9) (1), potyviruses (PVAS-769 [MAb PTY 3 Potyvirus Group] American Type Culture Collection, Manassas, VA), and luteoviruses (MAb B-2-5G4) (2). Twenty-two of the plants tested positive with MAb PTY 3 and BtMV antisera, 56 samples reacted with MAb B-2-5G4, and eight plants with the FBNYV MAb, whereas 24 plants tested negative with all antisera. Because reactions with the BtMV antiserum were unexpected, detection of BtMV was confirmed by reverse transcription-(RT)-PCR assays using BtMV-specific primers (LN26 and LN27) (4), which produced an amplicon of expected size (1,050 bp) from all plants that reacted with BtMV antiserum but not from plants that were serologically negative. Leaf tissue from a BtMV-infected plant was ground in 0.01 M potassium phosphate buffer, pH 7.2 (1:20, wt/vol), mixed with 0.5% celite, and used for mechanical inoculation of chickpea seedlings (cv. Beja 4). In addition, adults of three legume aphid species (Aphis craccivora, A. fabae, and Acyrthosiphon pisum) were starved for 1 h before feeding on BtMV-infected chickpea leaves for an acquisition access period of 5 min. Fifteen aphids of each species were placed on each chickpea plant, allowed to feed for 24 h, and then sprayed with an insecticide. Tip wilting symptoms appeared on plants 15 to 20 days after mechanical and aphid inoculations but not on plants used as negative control treatments (inoculated mechanically with healthy leaf tissue or with aphids that had fed on noninfected chickpea plants). Use of BtMV antiserum for TBIA analysis of inoculated plants revealed systemic BtMV infections in 35 of 92 plants inoculated mechanically and 15 of 75 plants inoculated with viruliferous A. fabae only. To our knowledge, this is the first record of BtMV infecting chickpea in Tunisia. References: (1) A. Franz et al. Ann. Appl. Biol. 128:255, 1996. (2) L. Katul. Characterization by serology and molecular biology of bean leaf roll virus and faba bean necrotic yellows virus. Ph.D. thesis. University of Gottingen, Germany, 1992. (3) K. M. Makkouk and A. Comeau. Eur. J. Plant Pathol. 100:71, 1994. (4) L. G. Nemchinov et al. Arch. Virol. 149:1201, 2004.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-94-8-1068C | DOI Listing |
Int J Biol Macromol
January 2025
Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China. Electronic address:
Changes in critical sites of virus-encoded protein or cis-acting element generally determine pathogenicity differentiation among different isolates of the same plant virus. Cucumber mosaic virus (CMV) isolates, which exhibit the most extensively known host range, demonstrate notable pathogenicity differentiation. This study focuses on the severe isolate CMV and mild isolate CMV, both affecting several species within the Solanaceae family, to identify the key factors regulating pathogenicity differentiation.
View Article and Find Full Text PDFEBioMedicine
January 2025
Imperial College London, Department of Infectious Disease, UK. Electronic address:
Background: We report findings from an experimental medicine study of rationally designed prefusion stabilised native-like HIV envelope glycoprotein (Env) immunogens, representative of global circulating strains, delivered by sequential intramuscular injection.
Methods: Healthy adult volunteers were enrolled into one of five groups (A to E) each receiving a different schedule of one of two consensus Env immunogens (ConM SOSIP, ConS UFO, either unmodified or stabilised by chemical cross-linking, followed by a boost with two mosaic Env immunogens (Mos3.1 and Mos3.
Clin Infect Dis
January 2025
ISARIC - Pandemic Sciences Institute, University of Oxford, United Kingdom.
Background: The global mpox outbreak which started in May 2022 was caused by a novel clade IIb variant of the mpox virus (MPXV). It differed from the traditional Western and Central Africa disease in transmission patterns and clinical presentation.
Methods: To address the need for detailed clinical and virologic data, we conducted an observational cohort study (MOSAIC) during May 2022-July 2023 in individuals with confirmed MPXV infection enrolled in six European Countries.
Sci Rep
January 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
Paris yunnanensis, also named as Rhizoma Paridis in the Chinese Pharmacopeia, is a perennial Chinese medicinal herb commonly grown in Southwest China. However, several viruses have been found infecting this plant in recent years. Using high-throughput sequencing (HTS) and Sanger sequencing, this study obtained the complete genome sequences of three capillovirus isolates and one potyvirus isolate.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
Potyvirids are the largest group of plant RNA viruses. Pelota, a core component of RNA quality controls (RQC), promotes the degradation of potyvirids' genomic RNA by recognizing a specific GA motif. Here we demonstrate that the viral RNA-dependent RNA polymerase, NIb, acts as a SUMOylation decoy to effectively reduce Pelota SUMOylation by competing with SCE1 to inhibit Pelota-mediated RQC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!