From 2006 to 2009, crown gall and hairy root symptoms were observed on blueberry (Vaccinium corymbosum cvs. O'Neil, Millennia, and Misty) plants from six nurseries in Tucumán, Concordia, Pilar, Morón, and Baradero, Argentina. Bacteria were isolated from galls of all three cultivars and from hairy roots of Millenia and O'Neil onto D1 and D1M agar media at 27°C. Typical Agrobacterium colonies developed in 5 days (2). Seven bacterial strains (five from galls and two from hairy roots) were studied further. All were gram negative, aerobic, and catalase positive with rod-shaped cells that synthesized β-galactosidase and metabolized D-glucose, D-arabinose, n-acetyl-glucosamine, maltose, mannitol, and malonate. Strains were negative for lysine decarboxylase, HS production, indole, and 3-ketolactose production. While gall strains were urease positive and citrate variable (mostly positive), hairy root strains were urease negative, citrate positive, had poly-β-hydroxybutyrate inclusion granules, and clarified acid on potato dextrose agar containing 0.5% CaCO (2). Agrobacterium tumefaciens ATCC 15955 and LBA 958 were included as controls. PCR with virA/C primers amplified a 338-bp product corresponding to the virD2 operon and confirmed that the strains harbored a pathogenic plasmid (1). Bacterial strains were assigned to biovars with a multiplex PCR assay targeting 23S rRNA sequences (3). Two strains produced PCR amplicons typical of A. rhizogenes bv. 2. The other five strains produced PCR amplicons typical of A. rubi, which were insensitive to agrocin in a bioassay with A. radiobacter strain K1026. Identity was confirmed by sequencing the 16S rDNA of strains F 266 (GenBank No. GU580894) and F 289 (No. GU580895), which had 99% homology to 16sRNA sequences of A. rubi ICMP 11833 (AY626395.1) and A. rhizogenes ATCC 11325 (AY945955.1), respectively. Pathogenicity of all seven strains was tested on V. corymbosum cv. Misty, Bryophyllum daigremontiana, tobacco cv. Xanthi, tomato cv. Presto, and pepper cv. California Wonder. Plants were inoculated by a needle stabbed into the stems with the appropriate cell suspension (10 CFU/ml) of each strain or with sterile distilled water (control treatment). Two plants of each species were tested per strain. Plants were grown for at least 45 days at 23 ± 3°C and symptoms were recorded. Inoculations with the five strains isolated from galls caused development of spherical, white to flesh-colored, rough, spongy wart-like galls at the inoculation sites. Root strains induced root proliferation on all inoculated plants as well as in a carrot disk bioassay (4). On blueberry plants, galls were dark brown to black, rough, and woody 6 months after inoculation. No lesions were observed on control plants. Bacteria were reisolated from symptomatic tissues of inoculated plants. Enterobacterial repetitive intergeneric consensus-PCR confirmed that the DNA fingerprints of the reisolated strains were identical to those of the original strains. To our knowledge, this is the first report of A. rubi and A. rhizogenes causing hairy root and crown gall on blueberry in Argentina. References: (1) J. H. Haas et. al. Appl. Environ. Microbiol. 61:2879,1995. (2) L. W. Moore et al. Page 17 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. N. W. Schaad et al., eds. The American Phytopathological Society, St. Paul, MN, 2001. (3) J. Pulawska et al. Syst. Appl. Microbiol. 29:470, 2006. (4) M. H. Ryder et al. Plant Physiol. 77:215, 1985.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-94-8-1064C | DOI Listing |
Hortic Res
January 2025
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China.
Glycerophosphodiester phosphodiesterase 1 (GDPD1) plays an important function in the abiotic stress responses and participates in the accumulation of sn-glycerol-3-phosphate (G3P) in plants, which is key to plant systemic acquired resistance (SAR). However, the role of GDPD1 in plant responses to biotic stress remains poorly understood. This study characterized the antivirus function of the gene (designated as ) from Eureka lemon.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China. Electronic address:
Long-term cadmium (Cd) exposure inhibits plant growth and development, reduces crop yield and quality, and threatens food security. Exploring the Cd tolerance mechanisms and safe production of crops in Cd-contaminated environment has become a worldwide concern. In this study, mung bean (Vigna radiata L.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.
Phenolic compounds, such as stilbenes and flavonoids, from spp. exhibit diverse biological activities, including antimicrobial, anti-inflammatory, and cytotoxicity properties. To this end, the objectives of this study were to establish hairy root cultures of and assess its capacity to produce these bioactive compounds.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Biotechnology Research Department, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), National Botanical Garden, Tehran Karaj Freeway, P.O. Box 13185-116, Tehran, Iran.
Hairy roots mediated by Agrobacterium rhizogenes can be obtained from the composite plants (plants with hairy roots and untransformed aerial parts) by ex vitro method. Composite plants can produce higher amounts of secondary metabolites by merging hydroponic systems. This provides a stable condition for composite plants, in which various metabolites are produced in different parts.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.
Genetic transformation is a powerful tool in plant biotechnology. However, its application is limited to species that are well-studied and easy to transform. There is a critical need to establish transformation protocols for non-model species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!