Recent studies have shown that several upstream signaling elements of apoptosis and necroptosis are closely associated with acute injury in the heart. In our study, we observed that miR-105 was notably dysregulated in rat hearts with myocardial infarction (MI). Thus, the purpose of this study was to test the hypothesis that miR-105 participates in the regulation of RIP3/p-MLKL- and BNIP3-dependent necroptosis/apoptosis in H9c2 cells and MI rat hearts. Our results show that the RIP3/p-MLKL necroptotic pathway and BNIP3-dependent apoptosis signaling are enhanced in H9c2 cells under hypoxic conditions, whereas, compared with these pathways in the controls, those in miR-105-treated H9c2 cells are suppressed. Mechanistically, we identified miR-105 as the miRNA directly suppressing the expression of RIP3 and BNIP3, two important mediators involved in cell necroptosis and apoptosis. Furthermore, MI rat hearts injected with miR-105 had decreased infarct sizes, indicating that miR-105 is among three miRNAs that function simultaneously to suppress necroptotic/apoptotic cell death pathways and to inhibit MI-induced cardiomyocyte cell death at multiple levels. Taken together, miR-105 may constitute a new therapeutic strategy for cardioprotection in ischemic heart disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369328 | PMC |
http://dx.doi.org/10.1016/j.omtn.2018.12.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!