Modeling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China.

Sci Total Environ

Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China. Electronic address:

Published: May 2019

Aedes aegypti and Aedes albopictus are two important mosquito species which transmit various infectious arbovirus diseases represented mainly by dengue fever. These two species of mosquito have a wide range of distribution and strong transfer capacity. With ongoing global climate change, we are facing an increasing public health threat from the rapid spread of vectors in wider geographical areas. Based on observed occurrence records of Ae. aegypti and Ae. albopictus and high-resolution environmental layers reflecting climate and land-use conditions, a Maxent niche modeling approach was adopted to model the current and future distribution of both species in Mainland China. Our models provide predictions of suitable habitat shifts under future climate scenarios up to the 2050s. Both species were predicted to expand their niche range to varying degrees under future climate scenarios. Aedes aegypti was modeled to expand its habitat from Guangdong, Guangxi, Yunnan and Hainan to Fujian, Jiangxi and Guizhou. Aedes albopictus was modeled to increase magnitude of distribution within its present range of northern, southwestern and southeastern coastal areas of Mainland China. Area and population exposed to mosquitoes are predicted to increase significantly. Environmental variables that have significant impact on the distribution of mosquitoes are also revealed by our model. The results of our study can be referenced in further ecological studies and will guide the development of strategies for the prevention and control of mosquito-borne diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.01.301DOI Listing

Publication Analysis

Top Keywords

aedes aegypti
12
aedes albopictus
12
mainland china
12
future distribution
8
aegypti aedes
8
climate change
8
future climate
8
climate scenarios
8
aedes
6
distribution
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!