Transcription by RNA polymerase II (Pol II) is controlled during initiation, elongation, and termination by a large variety of transcription factors, the state of chromatin modifications, and environmental conditions. Herein we describe experimental approaches for the examination of Pol II transcription at semi-global and genome-wide scales through analysis of nascent Pol II transcripts. We begin with a description of the nuclear walk-on (NWO) assay, which involves rapid isolation of nuclei in the presence of EDTA, followed by extension of about a quarter of the nascent transcripts with P-CTP. Labeled nascent transcripts are then analyzed by denaturing PAGE and phosphorimaging followed by densitometry analysis to quantify the signal on the gel. A parallel reaction containing α-amanitin to inhibit Pol II reveals transcription due to Pol I and Pol III, which can be subtracted to yield a profile of Pol II transcription. We then describe how to use the NWO as a front end for PRO-Seq and PRO-Cap methods, which permit the genome-wide characterization of Pol II transcription at nucleotide resolution and provide precise information about sites of transcription initiation and pausing. We discuss strategies for optimizing sequencing methods that capture nascent Pol II transcripts, methods of bias reduction, and approaches for normalizing these and other sequencing datasets using spike-in controls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589122PMC
http://dx.doi.org/10.1016/j.ymeth.2019.02.003DOI Listing

Publication Analysis

Top Keywords

pol transcription
12
pol
9
nuclear walk-on
8
rna polymerase
8
initiation pausing
8
nascent pol
8
pol transcripts
8
nascent transcripts
8
transcription
7
nascent
5

Similar Publications

A tripartite transcriptional module regulates protoderm specification during embryogenesis in Arabidopsis.

New Phytol

December 2024

State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.

Protoderm formation is a crucial step in early embryo patterning in plants, separating the precursors of the epidermis and the inner tissues. Although key regulators such as ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) and PROTODERMAL FACTOR2 (PDF2) have been identified in the model plant Arabidopsis thaliana, the genetic pathways controlling protoderm specification remain largely unexplored. Here, we combined genetic, cytological, and molecular approaches to investigate the regulatory mechanisms of protoderm specification in Arabidopsis thaliana.

View Article and Find Full Text PDF

HIV-1 unspliced RNA serves two distinct functions during viral replication: it is packaged into particles as the viral genome, and it is translated to generate Gag/Gag-Pol polyproteins required for virus assembly. Recent studies have demonstrated that in cultured cells, HIV-1 uses multiple transcription start sites to generate several unspliced RNA species, including two major transcripts with three and one 5' guanosine, referred to as 3G and 1G RNA, respectively. Although nearly identical, 1G RNA is selected over 3G RNA to be packaged as the virion genome, indicating that these RNA species are functionally distinct.

View Article and Find Full Text PDF

Defining the beginning of a eukaryotic protein-coding gene is relatively simple. It corresponds to the first ribonucleotide incorporated by RNA polymerase II (Pol II) into the nascent RNA molecule. This nucleotide is protected by capping and maintained in the mature messenger RNA (mRNA).

View Article and Find Full Text PDF

Med15 is a general transcriptional regulator and tail module subunit within the RNA Pol II mediator complex. The Med15 protein has a well-structured N-terminal KIX domain, three activator binding domains (ABDs) and several naturally variable polyglutamine (poly-Q) tracts (Q1, Q2, Q3) embedded in an intrinsically disordered central region, and a C-terminal mediator association domain (MAD). We investigated how the presence of ABDs and changes in length and composition of poly-Q tracts influences Med15 activity using phenotypic, gene expression, transcription factor interaction and phase separation assays of truncation, deletion, and synthetic alleles.

View Article and Find Full Text PDF

8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!