A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel bicephalous heterolipid based self-microemulsifying drug delivery system for solubility and bioavailability enhancement of efavirenz. | LitMetric

Novel bicephalous heterolipid based self-microemulsifying drug delivery system for solubility and bioavailability enhancement of efavirenz.

Int J Pharm

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India. Electronic address:

Published: April 2019

There is an increasing demand for new lipidic biocompatible and safe materials for self-microemulsifying drug delivery system (SMEDDS). The present work reports the synthesis, characterization, oral mucosal irritation study, and application of novel erucic acid ester of G-PETIM dendron based bicephalous heterolipid (BHL) as an oil phase in SMEDDS using Efavirenz (EFA), a BCS class II drug with poor water solubility and poor bioavailability. Studies were conducted to optimize EFA SMEDDS using different ratios of the BHL as oil phase and surfactant: co-surfactant weight ratios (Km). At Km (1.5), the microemulsion was spontaneously formed in water with mean globule size of 22.78 ± 0.25 nm and polydispersity index (PDI) of 0.23 ± 0.031 with high drug loading efficiency of 80.35 ± 3.1%. Standard stability tests were performed on EFA SMEDDS and the results indicated it to be highly stable. The in vitro dissolution profile of EFA SMEDDS showed >95% of the drug release within an hour and expectedly substantial enhancement in in vivo bioavailability was observed; almost 6-fold increase in bioavailability with parameters C 5.2 µg/mL, T 3 h, and AUC 23.48 μg/h/mL respectively as compared the plain suspension of the drug. In conclusion, the BHL can be used effectively as an oil phase in SMEDDS to enhance solubility and bioavailability of BCS Class II drugs. Further, it holds, in general, a great promise as a new excipient for solubility and bioavailability enhancements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2019.01.065DOI Listing

Publication Analysis

Top Keywords

solubility bioavailability
12
oil phase
12
efa smedds
12
bicephalous heterolipid
8
self-microemulsifying drug
8
drug delivery
8
delivery system
8
bhl oil
8
phase smedds
8
bcs class
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!