Epoxidation of alkenes derived from essential fatty acids is a key step in the biosynthesis of sex pheromones in moth species that utilize alkenyl sex pheromones. The position of the epoxy ring in the pheromone molecule differs depending on the species, thereby conferring diversities on sex pheromones. To date, only one pheromone gland (PG)-specific epoxidase, Hc_epo1 (CYP341B14), has been reported. Hc_epo1, which was identified from an arctiid moth Hyphantria cunea, catalyzes the epoxidation of a double bond at position 9 of the triene, Z3,Z6,Z9-21:H. In the present study, we investigated the PG-specific epoxidase from another arctiid, the mulberry tiger moth Lemyra imparilis, in order to verify whether cytochrome P450 in the CYP341B subfamily, to which Hc_epo1 belongs to, is responsible for the epoxidation of pheromone precursors at position 9 in moths other than H. cunea. A fragment of the Hc_epo1 homolog was amplified from cDNA prepared from the PG of L. imparilis by PCR with degenerate primers. The deduced amino acid sequence of the subsequently cloned homolog, Li_epo1, showed 88.5% identity to Hc_epo1. A functional assay using the Sf9 insect cell line-baculovirus expression system showed that Li_epo1 exhibited epoxidase activity with high selectivity to the double bond at position 9 of two trienes, Z3,Z6,Z9-21:H and Z3,Z6,Z9-23:H, precursors of epoxy diene sex pheromone components in L. imparilis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2019.02.001DOI Listing

Publication Analysis

Top Keywords

sex pheromones
12
mulberry tiger
8
tiger moth
8
moth lemyra
8
lemyra imparilis
8
pg-specific epoxidase
8
double bond
8
bond position
8
hc_epo1
5
functional characterization
4

Similar Publications

Background: Mating disruption (MD) is a worthwhile technique for the control of and in central Europe and Mediterranean areas. MD efficacy is affected by the pheromone release (PR), which in turn is influenced by environmental conditions.

Methods: The effect of weather conditions on PR was evaluated under four different fields in northern Italy.

View Article and Find Full Text PDF

Functional Role of Odorant-Binding Proteins in Response to Sex Pheromone Component 8-14:Ac in (Busck).

Insects

November 2024

Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China.

The plum fruit moth (PFM), , and the oriental fruit moth (OFM), , are closely related fruit moth species that severely damage fruit trees in Rosaceae. Both species share common primary sex pheromone components 8-12:Ac and 8-12:Ac. The secondary sex pheromone components of PFMs consist of 8-12:OH, 8-14:Ac, and 10-14:Ac, while those of OFMs include 8-12:OH and 12:OH.

View Article and Find Full Text PDF

Olfaction with legs-Spiders use wall-pore sensilla for pheromone detection.

Proc Natl Acad Sci U S A

January 2025

General and Systematic Zoology, Zoological Institute and Museum, University of Greifswald, Greifswald 17489, Germany.

The sense of smell is a central sensory modality of most terrestrial species. However, our knowledge of olfaction is based on vertebrates and insects. In contrast, little is known about the chemosensory world of spiders and nothing about how they perform olfaction despite their important ecological role.

View Article and Find Full Text PDF

Male tephritid fruit flies typically emit pheromones from rectal glands to attract mates. Consistent with this, virgin females of the cucumber fruit fly, Zeugodacus cucumis (French), were found to be attracted to volatiles emitted by crushed male rectal glands in Y-tube olfactometer bioassays. Electrophysiological studies identified several male rectal gland compounds that triggered responses in female antennae.

View Article and Find Full Text PDF

Flipping indirect defense: Chemical cues from natural enemies mediate multitrophic interactions.

Curr Opin Insect Sci

December 2024

Department of Entomology, Texas A&M University, College Station, TX, USA. Electronic address:

Plants and invertebrates use chemical signals and cues to construct information about their environment. It is well reviewed that chemical signals play key roles in interactions between conspecific insects, such as sex pheromones for finding mates, and that plants transmit chemical signals to recruit natural enemies that kill herbivores. However, it is also known that chemicals emitted by natural enemies can influence insect herbivore physiology and behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!