Pancreatic ductal adenocarcinoma (PDAC) is the most life-threating disease among all digestive system malignancies. We developed a blood mRNA PDAC screening system using real-time detection PCR to detect the expression of 56 genes, to discriminate PDAC from noncancer subjects. We undertook a clinical study to assess the performance of the developed system. We collected whole blood RNA from 53 PDAC patients, 102 noncancer subjects, 22 patients with chronic pancreatitis, and 23 patients with intraductal papillary mucinous neoplasms in a per protocol analysis. The sensitivity of the system for PDAC diagnosis was 73.6% (95% confidence interval, 59.7%-84.7%). The specificity for noncancer volunteers, chronic pancreatitis, and patients with intraductal papillary mucinous neoplasms was 64.7% (54.6%-73.9%), 63.6% (40.7%-82.8%), and 47.8% (26.8%-69.4%), respectively. Importantly, the sensitivity of this system for both stage I and stage II PDAC was 78.6% (57.1%-100%), suggesting that detection of PDAC by the system is not dependent on the stage of PDAC. These results indicated that the screening system, relying on assessment of changes in mRNA expression in blood cells, is a viable alternative screening strategy for PDAC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447845 | PMC |
http://dx.doi.org/10.1111/cas.13971 | DOI Listing |
J Gastrointest Cancer
January 2025
Department of Gastrointestinal Medical Oncology, Oncoclínicas, Florianópolis, SC, Brazil.
Purpose: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with poor response to chemotherapy. High-frequency microsatellite instability (MSI-H) is a rare biological phenomenon in conventional PDAC, being more frequently described in tumors with medullary or mucinous features.
Methods And Results: In this manuscript, we report the case of a patient with an MSI-H pancreatic carcinoma with medullary features (medullary carcinoma of the pancreas-MCP) that achieved a complete pathological response after neoadjuvant modified FOLFIRINOX.
J Am Coll Surg
January 2025
Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH.
Background: Neoadjuvant therapy (NT) is increasingly utilized for patients with pancreatic ductal adenocarcinoma (PDAC). Disease progression, toxicity, and failure to undergo surgical resection are common during NT, yet little research has focused on efforts to optimize care delivery. We sought to define and validate a novel composite outcomes metric that characterizes the successful delivery of NT.
View Article and Find Full Text PDFUnlabelled: Cancer cachexia, a multifactorial condition resulting in muscle and adipose tissue wasting, reduces the quality of life of many people with cancer. Despite decades of research, therapeutic options for cancer cachexia remain limited. Cachexia is highly prevalent in people with pancreatic ductal adenocarcinoma (PDAC), and many animal models of pancreatic cancer are used to understand mechanisms underlying cachexia.
View Article and Find Full Text PDFEndosc Ultrasound
December 2024
Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
Background And Objectives: A majority of pancreatic malignancies are unresectable at the time of presentation and require EUS-guided fine-needle aspiration or fine-needle biopsy (EUS-FNA/FNB) for diagnosis. With the advent of precision therapy, there is an increasing need to use EUS-FNA/FNB sample for genetic analysis. Next-generation sequencing (NGS) is a preferred technology to detect genetic mutations with high sensitivity in small specimens.
View Article and Find Full Text PDFEndosc Ultrasound
December 2024
Department of Gastroenterology, Ponderas Academic Hospital, Bucharest, Romania.
Background: EUS-guided fine-needle biopsy is the procedure of choice for the diagnosis of pancreatic ductal adenocarcinoma (PDAC). Nevertheless, the samples obtained are small and require expertise in pathology, whereas the diagnosis is difficult in view of the scarcity of malignant cells and the important desmoplastic reaction of these tumors. With the help of artificial intelligence, the deep learning architectures produce a fast, accurate, and automated approach for PDAC image segmentation based on whole-slide imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!