Syndecans are single-span membrane proteins playing important roles in cell-cell and cell-matrix interactions. The transmembrane domain of syndecans is critical for signal transduction across the cell membrane. Here, the structure of the transmembrane domain of syndecan-2 in detergent micelles was investigated using solution NMR spectroscopy. Backbone resonance assignment was obtained, and NMR studies show that the transmembrane domain forms a helix in detergent micelles, which is also supported by the hydrogen and deuterium exchange experiment. A study of the dynamics revealed the rigid structure of the transmembrane domain formed in solution, and paramagnetic relaxation enhancement defined the topology of the transmembrane domain in detergent micelles. This structural analysis may facilitate a better understanding of the role of the syndecan-2 transmembrane domain in signal transduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1873-3468.13335 | DOI Listing |
Int J Biol Macromol
January 2025
Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Infection Control, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China. Electronic address:
The study collected liver tissue samples from PBC patients and healthy controls and performed transcriptomic analysis of the cells in the samples using single-cell RNA sequencing. The expression characteristics of SHISA5 in PBC were revealed by comparing the difference of SHISA5 protein in the two groups of samples. The structure of SHISA5 protein was predicted and its possible biological function was analysed by bioinformatics method.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
College of Life Sciences, Liaoning Normal University, Dalian 116000, Liaoning Province, China.
Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
J Biol Chem
January 2025
School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA; Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA; George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. In mammals, there are 16 individual nAChR subunits allowing for numerous possible heteromeric compositions. nAChRs assembled from α7 or α9 subunits will form as homopentamers.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China. Electronic address:
The pigments present in the fibers of naturally colored cotton provide excellent antibacterial and environmentally friendly properties, making these colored fibers increasingly favored by the textile industry and consumers. Proanthocyanidins (PAs), the critical pigments responsible for the color of brown cotton fiber, are produced on the endoplasmic reticulum and subsequently transported to the vacuole for polymerization and/or storage. Previous studies have identified GhTT12 as a potential transmembrane transporter of PAs in Gossypium hirsutum, with GhTT12 being a homolog of Arabidopsis Transparent Testa 12 (TT12).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!