TDP-43, an RNA-binding protein that is primarily nuclear and important in splicing and RNA metabolism, is mislocalized from the nucleus to the cytoplasm of neural cells in amyotrophic lateral sclerosis (ALS), and contributes to disease. We sought to investigate whether TDP-43 is mislocalized in infections with the acute neuronal GDVII strain and the persistent demyelinating DA strain of Theiler's virus murine encephalomyelitis virus (TMEV), a member of the Cardiovirus genus of Picornaviridae because: i) L protein of both strains is known to disrupt nucleocytoplasmic transport, including transport of polypyrimidine tract binding protein, an RNA-binding protein, ii) motor neurons and oligodendrocytes are targeted in both TMEV infection and ALS. TDP-43 phosphorylation, cleavage, and cytoplasmic mislocalization to an aggresome were observed in wild type TMEV-infected cultured cells, with predicted splicing abnormalities. In contrast, cells infected with DA and GDVII strains that have L deletion had rare TDP-43 mislocalization and no aggresome formation. TDP-43 mislocalization was also present in neural cells of TMEV acutely-infected mice. Of note, TDP-43 was mislocalized six weeks after DA infection to the cytoplasm of oligodendrocytes and other glial cells in demyelinating lesions of spinal white matter. A recent study showed that TDP-43 knock down in oligodendrocytes in mice led to demyelination and death of this neural cell [1], suggesting that TMEV infection mislocalization of TDP-43 and other RNA-binding proteins is predicted to disrupt key cellular processes and contribute to the pathogenesis of TMEV-induced diseases. Drugs that inhibit nuclear export may have a role in antiviral therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390522PMC
http://dx.doi.org/10.1371/journal.ppat.1007574DOI Listing

Publication Analysis

Top Keywords

tdp-43
9
murine encephalomyelitis
8
encephalomyelitis virus
8
tdp-43 rna-binding
8
rna-binding protein
8
neural cells
8
tdp-43 mislocalized
8
tmev infection
8
mislocalization aggresome
8
tdp-43 mislocalization
8

Similar Publications

Deep learning analyses of splicing variants identify the link of PCP4 with amyotrophic lateral sclerosis.

Brain

January 2025

State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, 200331, Shanghai, China.

Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease, with most sporadic cases lacking clear genetic causes. Abnormal pre-mRNA splicing is a fundamental mechanism in neurodegenerative diseases. For example, TAR DNA-binding protein 43 (TDP-43) loss-of-function (LOF) causes widespread RNA mis-splicing events in ALS.

View Article and Find Full Text PDF

TAR DNA-binding protein (TDP-43) and Metastasis Associated Lung Adenocarcinoma Transcript (MALAT1) RNA are both abundantly expressed in the human cell nucleus. Increased interaction of TDP-43 and MALAT1, as well as dysregulation of TDP-43 function, was previously identified in brain samples from patients with neurodegenerative disease compared to healthy brain tissues. We hypothesized that TDP-43 function may depend in part on MALAT1 expression levels.

View Article and Find Full Text PDF

TDP-43 transports ferritin heavy chain mRNA to regulate oxidative stress in neuronal axons.

Neurochem Int

January 2025

Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan; Mount Fuji Research Institute, Yamanashi Prefectural Government, Yamanashi, Japan. Electronic address:

Amyotrophic lateral sclerosis (ALS) is characterized by the mislocalization and abnormal deposition of TAR DNA-binding protein 43 (TDP-43). This protein plays important roles in RNA metabolism and transport in motor neurons and glial cells. In addition, abnormal iron accumulation and oxidative stress are observed in the brain and spinal cord of patients with ALS exhibiting TDP-43 pathology and in animal models of ALS.

View Article and Find Full Text PDF

Neurodegeneration: 2024 update.

Free Neuropathol

January 2024

Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

This review highlights a collection of both diverse and highly impactful studies published in the previous year selected by the author from the neurodegenerative neuropathology literature. As with previous reviews in this series, the focus is, to the best of my ability, to highlight human tissue-based experimentation most relevant to experimental and clinical neuropathologists. A concerted effort was made to balance the selected studies across neurodegenerative disease categories, approaches, and methodologies to capture the breadth of the research landscape.

View Article and Find Full Text PDF

Introduction: Greater white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) are seen with transactive response DNA-binding protein 43 (TDP-43) pathology in frontotemporal lobar degeneration (FTLD-TDP). WMH associations with TDP-43 pathology in Alzheimer's disease (AD-TDP) remain unclear.

Methods: A total of 157 participants from Mayo Clinic Rochester with autopsy-confirmed AD, known TDP-43 status, and antemortem fluid-attenuated inversion recovery (FLAIR) MRI were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!