In the ESA space experiment BIOMEX (BIOlogy and Mars EXperiment), dried Chroococcidiopsis cells were exposed to Mars-like conditions during the EXPOSE-R2 mission on the International Space Station. The samples were exposed to UV radiation for 469 days and to a Mars-like atmosphere for 722 days, approaching the conditions that could be faced on the surface of Mars. Once back on Earth, cell survival was tested by growth-dependent assays, while confocal laser scanning microscopy and PCR-based assay were used to analyze the accumulated damage in photosynthetic pigments (chlorophyll a and phycobiliproteins) and genomic DNA, respectively. Survival occurred only for dried cells (4-5 cell layers thick) mixed with the martian soil simulants P-MRS (phyllosilicatic martian regolith simulant) and S-MRS (sulfatic martian regolith simulant), and viability was only maintained for a few hours after space exposure to a total UV (wavelength from 200 to 400 nm) radiation dose of 492 MJ/m (attenuated by 0.1% neutral density filters) and 0.5 Gy of ionizing radiation. These results have implications for the hypothesis that, during Mars's climatic history, desiccation- and radiation-tolerant life-forms could have survived in habitable niches and protected niches while transported.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ast.2017.1807DOI Listing

Publication Analysis

Top Keywords

mars-like conditions
8
martian regolith
8
regolith simulant
8
desert cyanobacterium
4
cyanobacterium simulated
4
simulated mars-like
4
conditions low
4
low earth
4
earth orbit
4
orbit implications
4

Similar Publications

Under various atmospheric conditions, laser-induced breakdown spectroscopy (LIBS) is a powerful technique for elemental analysis, including in Earth- and Mars-like environments. However, understanding the plasma behavior and its dependence on ambient pressure and laser parameters remains a challenge. In this study, a numerical model based on a three-temperature Eulerian radiation framework under non-local thermodynamic equilibrium conditions is employed to investigate the interaction of a nanosecond laser pulse with a graphite target under helium (He) and carbon dioxide (CO atmospheres.

View Article and Find Full Text PDF

Hydrogen production capabilities of lichens micro-ecosystem under extreme salinity, crystalline salt exposure, and simulated Mars-like conditions.

J Biotechnol

December 2024

Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece; Botanical Garden, University of Crete, Gallos University Campus, GR-74100 Rethymnon, Crete, Greece. Electronic address:

Article Synopsis
  • The research showcases how the lichen Pleurosticta acetabulum can thrive in extreme salt conditions while still producing hydrogen, highlighting its extremophilic nature.
  • The lichen's unique symbiotic system, which includes fungal and algal partners, allows it to go dormant and recover after dehydration, restoring its metabolic functions efficiently.
  • Experiments demonstrate that even under harsh conditions simulating Mars, this lichen can maintain photosynthetic activity and hydrogen production, suggesting potential for astrobiological applications.
View Article and Find Full Text PDF

Earth's lower near space of 20-40 km above sea level with polyextreme conditions serves as a unique Mars analog for astrobiological research to investigate the limits of life on Earth and planetary protection considerations for Mars exploration. In this study, we exposed Mars-like desert regolith to near space at a float altitude of ~35 km and isolated four bacterial strains after exposure. In addition to stress tolerance to extreme environmental stressors, these strains represent a remarkable tolerance to perchlorate that is widespread in present-day Martian soils.

View Article and Find Full Text PDF

Moss surviving Mars-like extreme conditions.

Innovation (Camb)

September 2024

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.

View Article and Find Full Text PDF

The Martian surface and shallow subsurface lacks stable liquid water, yet hygroscopic salts in the regolith may enable the transient formation of liquid brines. This study investigated the combined impact of water scarcity, UV exposure, and regolith depth on microbial survival under Mars-like environmental conditions. Both vegetative cells of Debaryomyces hansenii and Planococcus halocryophilus, alongside with spores of Aspergillus niger, were exposed to an experimental chamber simulating Martian environmental conditions (constant temperatures of about - 11 °C, low pressure of approximately 6 mbar, a CO atmosphere, and 2 h of daily UV irradiation).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!