Resonance Theory Reboot.

J Am Chem Soc

Department of Chemistry , University of Wisconsin-Madison, Madison , Wisconsin 53706 , United States.

Published: March 2019

What is now called "resonance theory" has a long and conflicted history. We first sketch the early roots of resonance theory, its heritage of diverse physics and chemistry conceptions, and its subsequent rise to reigning chemical bonding paradigm of the mid-20th century. We then outline the alternative "natural" pathway to localized Lewis- and resonance-structural conceptions that was initiated in the 1950s, given semi-empirical formulation in the 1970s, recast in ab initio form in the 1980s, and successfully generalized to multi-structural "natural resonance theory" (NRT) form in the 1990s. Although earlier numerical applications were often frustrated by the ineptness of then-available numerical solvers, the NRT variational problem was recently shown to be amenable to highly efficient convex programming methods that yield provably optimal resonance weightings at a small fraction of previous computational costs. Such convexity-based algorithms now allow a full "reboot" of NRT methodology for tackling a broad range of chemical applications, including the many familiar resonance phenomena of organic and biochemistry as well as the still broader range of resonance attraction effects in the inorganic domain. We illustrate these advances for prototype chemical applications, including (i) stable near-equilibrium species, where resonance mixing typically provides only small corrections to a dominant Lewis-structural picture, (ii) reactive transition-state species, where strong resonance mixing of reactant and product bonding patterns is inherent, (iii) coordinative and related supramolecular interactions of the inorganic domain, where sub-integer resonance bond orders are the essential origin of intermolecular attraction, and (iv) exotic long-bonding and metallic delocalization phenomena, where no single "parent" Lewis-structural pattern gains pre-eminent weighting in the overall resonance hybrid.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b12336DOI Listing

Publication Analysis

Top Keywords

resonance
10
resonance theory
8
chemical applications
8
applications including
8
inorganic domain
8
resonance mixing
8
theory reboot
4
reboot called
4
called "resonance
4
"resonance theory"
4

Similar Publications

Background: Traumatic anterior shoulder dislocation is the most common type of joint dislocation, with an incidence of 11 to 29 per 100 000 persons per year. Controversy still surrounds the recommendations for treatment and the available procedures for surgical stabilization.

Methods: This review is based on pertinent publications (2014-2024) that were retrieved by a selective search in the PubMed and Google Scholar databases.

View Article and Find Full Text PDF

Novel Meningoencephalomyelitis Associated With Vimentin IgG Autoantibodies.

JAMA Neurol

January 2025

Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China.

Importance: Autoantibodies targeting astrocytes, such as those against glial fibrillary acidic protein (GFAP) or aquaporin protein 4, are crucial diagnostic markers for autoimmune astrocytopathy among central nervous system (CNS) autoimmune disorders. However, diagnosis remains challenging for patients lacking specific autoantibodies.

Objective: To characterize a syndrome of unknown meningoencephalomyelitis associated with an astrocytic autoantibody.

View Article and Find Full Text PDF

Proportions of incommensurate, resonant, and chaotic orbits for torus maps.

Chaos

January 2025

Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309-0526, USA.

This paper focuses on distinguishing classes of dynamical behavior for one- and two-dimensional torus maps, in particular, between orbits that are incommensurate, resonant, periodic, or chaotic. We first consider Arnold's circle map, for which there is a universal power law for the fraction of nonresonant orbits as a function of the amplitude of the nonlinearity. Our methods give a more precise calculation of the coefficients for this power law.

View Article and Find Full Text PDF

Inverse stochastic resonance in a two-dimensional airfoil system with nonlinear pitching stiffness driven by Lévy noise.

Chaos

January 2025

State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

The aircraft can experience complex environments during the flight. For the random actions, the traditional Gaussian white noise assumption may not be sufficient to depict the realistic stochastic loads on the wing structures. Considering fluctuations with extreme conditions, Lévy noise is a better candidate describing the stochastic dynamical behaviors on the airfoil models.

View Article and Find Full Text PDF

The European Society of Cardiology (ESC) has updated its guidelines on cardiac pacing and cardiac resynchronisation. As the majority are class II recommendations (61%) and based on expert opinion (59%), a critical appraisal for the Dutch situation was warranted. A working group has been established, consisting of specialists in cardiology, cardiothoracic surgery, geriatrics, allied professionals in cardiac pacing, and patient organisations with support from the Knowledge Institute of the Dutch Association of Medical Specialists.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!