Alum-sludge ceramsite and denitrifying bacteria (XP-1, XP-2, CL-1, CL-3) were used as substrate and constructed biofilm for enhancing the removal of pollutants from wastewater. The results showed that, due to the large specific surface area, the maximum growth rate was 0.49 mg/(g·day) on the sludge ceramsite, and the mass of biofilm attached onto sludge ceramsite was 5.98 times higher than that when using commercial ceramsite as substrate. Better removal performance could be achieved with the combination of sludge ceramsite and bacteria, viz. 98.6%, 91.0%, and 85.8% reduction in total phosphorus (TP), total nitrogen (TN), and chemical oxygen demand (COD), respectively. Pseudo-first-order kinetics, pseudo-second-order kinetics, Monod kinetics, and multiple Monod kinetics combined with continuous-flow-stirred tank reactor (CFSTR) behavior were used to investigate the dynamics of the pollutant removal processes. The decrease in band brightness for bacteria attached onto sludge ceramsite was 11.5%, while it was more than 35.7% on commercial ceramsite during wastewater treatment according to results from denaturing gradient gel electrophoresis (DGGE). Sludge ceramsite played an important role in maintaining quantities and activities of denitrifying bacteria, and application of sludge ceramsite substrate and denitrifying bacteria was a reliable method to enhance the removals of phosphorus, nitrogen, and COD from domestic wastewater. PRACTITIONER POINTS: Alum-sludge ceramsite was a good substrate for phosphorus adsorption and denitrifying bacterial growth. There was 5.98 times more biofilm on sludge ceramsite than on commercial ceramsite The biofilm of denitrifying bacteria on sludge ceramsite was more stable. High removals of TP (98.6%), TN (90.1%) and COD (85.81%) were achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wer.1089 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!