Cu(ii)-nanoparticle-derived structures under CO reduction conditions: a matter of shape.

Phys Chem Chem Phys

Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

Published: March 2019

Uncovering the nature and formation mechanisms of active sites in electrocatalysts is crucial for advancing energy conversion technologies. Cu(ii)-derived electrodes show unique activity in CO2 electroreduction, but its origins are not fully understood. We investigate the structural evolution of Cu(OH)2 nanoparticle-derived electrodes and its effect on their performance in CO2 electroreduction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp07891bDOI Listing

Publication Analysis

Top Keywords

co2 electroreduction
8
cuii-nanoparticle-derived structures
4
structures reduction
4
reduction conditions
4
conditions matter
4
matter shape
4
shape uncovering
4
uncovering nature
4
nature formation
4
formation mechanisms
4

Similar Publications

Given the inherent challenges of the CO electroreduction (COER) reaction, solely from CO and HO, it is desirable to develop selective product formation pathways. This can be achieved by designing multimetallic nanocomposites that provide optimal CO coverage, allowing for tunability in the product formation. In this work, Ag and Zn codoped-SrTiO (ZAST) composite immobilized carbon black (CB)-modified GCE working electrode (ZAST@CB/GCE) was developed for the electrochemical conversion of CO to multicarbon products.

View Article and Find Full Text PDF

The Proximal Protonation Source in Cu-NHx-C Single Atom Catalysts Selectively Boosts CO2 to Methane Electroreduction.

Angew Chem Int Ed Engl

January 2025

Peking University Shenzhen Graduate School, Shool of Chemical Biology and Biotechnology, Lishui Road, Nanshan District, -, Shenzhen, CHINA.

Regulating the coordination environment of active sites has proved powerful for tapping into their catalytic activity and selectivity in homogeneous catalysis, yet the heterogeneous nature of copper single-atom catalysts (SACs) makes it challenging. This work reports a bottom-up approach to construct a SAC (rGO@Cu-N(Hx)-C) by inlaying preformed amine coordinated Cu2+ units into reduced graphene oxide (rGO), permitting molecular level revelation on how the proximal N-site functional groups (N-H or N-CH3) impact on the carbon dioxide reduction reaction (CO2RR). It is demonstrated that the N-H moiety of rGO@Cu-NHx-C can serve as an in-situ protonation agent to accelerate the CO2-to-methane reduction kinetics, delivering a methane current density (163 mA/cm2) 2.

View Article and Find Full Text PDF

Coordinatively unsaturated copper (Cu) has been demonstrated to be effective for electrifying CO reduction into C products by adjusting the coupling of C-C intermediates. Nevertheless, the intuitive impacts of ultralow coordination Cu sites on C products are scarcely elucidated due to the lack of synthetic recipes for Cu with low coordination numbers and its vulnerability to aggregation under reductive potentials. Herein, computational predictions revealed that Cu sites with higher levels of coordinative unsaturation favored the adsorption of C and C intermediates.

View Article and Find Full Text PDF

Modulating Electronic Density of Single-Atom Ni Center by Heteroatoms for Efficient CO Electroreduction.

Small

January 2025

CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

Single-atom catalysts (SACs) with unique geometric and electronic configurations have triggered great interest in many important reactions. However, controllably modulating the electronic structure of metal centers to enhance catalytic performance remains a challenge. Here, the electronic structure of Ni centers over Ni-NC SACs by introducing electron-rich phosphorus or electron-deficient boron for electrochemical CO reduction (CORR) is systematically tailored.

View Article and Find Full Text PDF

The electrochemical reduction of CO (CORR) to value-added products has garnered significant interest as a sustainable solution to mitigate CO emissions and harness renewable energy sources. Among CORR products, formic acid/formate (HCOOH/HCOO) is particularly attractive due to its industrial relevance, high energy density, and potential candidate as a liquid hydrogen carrier. This study investigates the influence of the initial oxidation state of tin on CORR performance using nanostructured SnO catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!