Exsolution has been intensively studied in the fields of energy conversion and storage as a method for the preparation of catalytically active and durable metal nanoparticles. Under typical conditions, however, only a limited number of nanoparticles can be exsolved from the host oxides. Herein, we report the preparation of catalytic nanoparticles by selective exsolution through topotactic ion exchange, where deposited Fe guest cations can be exchanged with Co host cations in PrBaMnCoO. Interestingly, this phenomenon spontaneously yields the host PrBaMnFeO, liberating all the Co cations from the host owing to the favorable incorporation energy of Fe into the lattice of the parent host (ΔE = -0.41 eV) and the cation exchange energy (ΔE = -0.34 eV). Remarkably, the increase in the number of exsolved nanoparticles leads to their improved catalytic activity as a solid oxide fuel cell electrode and in the dry reforming of methane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370853PMC
http://dx.doi.org/10.1038/s41467-019-08624-0DOI Listing

Publication Analysis

Top Keywords

nanoparticles
5
host
5
cation-swapped homogeneous
4
homogeneous nanoparticles
4
nanoparticles perovskite
4
perovskite oxides
4
oxides high power
4
high power density
4
density exsolution
4
exsolution intensively
4

Similar Publications

Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).

View Article and Find Full Text PDF

Current study investigates the medicinal applications of (Palash), the state flower of Jharkhand, India, focusing on synthesising biomodified copper oxide nanoparticles (CuO-NPs) and its antifungal properties. Flavonoid content in the flower extract was quantified by aluminium chloride colorimetric analysis. CuO-NPs were synthesised via co-precipitation method and then modified with methanolic flower extract.

View Article and Find Full Text PDF

Recent Development of Nanoparticle Platforms for Organophosphate Nerve Agent Detoxification.

Langmuir

January 2025

Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K. C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States.

Poisoning by organophosphate (OP) nerve agents remains a pressing global threat due to their extensive use in chemical warfare agents and pesticides, potentially causing high morbidity and mortality worldwide. This urgent need for effective countermeasures has driven considerable interest in innovative detoxification approaches. Among these, nanoparticle technology stands out for its multifunctional potential and wide-ranging applications.

View Article and Find Full Text PDF

Urotropine, an antibacterial agent to treat urinary tract bacterial infections, can be also considered as a repurposed drug with formaldehyde-mediated anticancer activity. Recently, we have synthesized urotropine surface modified iron oxide nanoparticles (URO@FeO NPs) with improved colloidal stability and limited cytotoxicity against human fibroblasts. In the present study, we have investigated URO@FeO NP-mediated responses in a panel of forty phenotypically different breast cancer cell lines along with three non-cancerous corresponding cell lines.

View Article and Find Full Text PDF

In the present study, dispersive solid phase extraction - hydride generation integrated with micro-sampling gas-liquid separator - flame atomic absorption spectrometry was proposed to determine lead in lake water samples taken in the Horseshoe Island, Antarctica. In scope of this study, microwave assisted NiFeO nanoparticles were synthesized, and the characterization of nanoparticles were carried out by FT-IR, XRD and SEM. All influential parameters of dispersive solid phase extraction and hydride generation were optimized to enhance signal intensity belonging to the analyte.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!