Alzheimer's disease (AD), the most common neurodegenerative dementia, leads to memory dysfunction due to widespread neuronal loss associated with aggregation of amyloidogenic proteins (APs), while schizophrenia (SCZ) represents a major psychiatric disorder characterized by delusions, hallucinations, and other cognitive abnormalities, the underlying mechanisms of which remain obscure. Although AD and SCZ partially overlap in terms of psychiatric symptoms and some aspects of cognitive impairment, the causal relationship between AD and SCZ is unclear. Based on the similarity of APs with yeast prion in terms of stress-induced protein aggregation, we recently proposed that evolvability of APs might be an epigenetic phenomenon to transmit stress information of parental brain to cope with the stressors in offspring. Although amyloid evolvability may be beneficial in evolution, AD might be manifested during parental aging as the mechanism of antagonistic pleiotropy phenomenon. Provided that accumulating evidence implicates stress as an important factor in SCZ, the main objective of this paper is to better understand the possible connection of AD and SCZ through amyloid evolvability. Hypothetically, the delivery of information of stress by APs may be less efficient under the decreased evolvability conditions such as disease-modifying treatment, leading to SCZ in offspring. Conversely, the increased evolvability conditions including gene mutations of APs are supposed to be beneficial for offspring, but might lead to AD in parents. Collectively, AD and SCZ might transgenerationally interfere with each other through amyloid evolvability, and this could explain why both AD and SCZ have not been selected out through evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484278 | PMC |
http://dx.doi.org/10.3233/JAD-180986 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!