Background: The conservation of the joint anatomy is an important factor in total knee arthroplasty (TKA). The restoration of the femoral posterior condylar offset (PCO) has been well known to influence the clinical outcome after TKA.

Objective: The purpose of this study was to determine the mechanism of PCO in finite element models with conservation of subject anatomy and different PCO of ±1, ±2, ±3 mm in posterior direction using posterior cruciate ligament-retaining TKA.

Methods: Using a computational simulation, we investigated the influence of the changes in PCO on the contact stress in the polyethylene (PE) insert and patellar button, on the forces on the collateral and posterior cruciate ligament, and on the quadriceps muscle and patellar tendon forces. The computational simulation loading condition was deep knee bend.

Results: The contact stresses on the PE insert increased, whereas those on the patellar button decreased as posterior condylar offset translated to the posterior direction. The forces exerted on the posterior cruciate ligament and collateral ligaments increased as PCO translated to the posterior direction. The translation of PCO in the anterior direction, in an equivalent flexion angle, required a greater quadriceps muscle force.

Conclusions: Translations of the PCO in the posterior and anterior directions resulted in negative effects in the PE insert and ligament, and the quadriceps muscle force, respectively. Our findings suggest that orthopaedic surgeons should be careful with regard to the intraoperative conservation of PCO, because an excessive change in PCO may lead to quadriceps weakness and an increase in posterior cruciate ligament tension.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BME-191041DOI Listing

Publication Analysis

Top Keywords

posterior cruciate
16
posterior condylar
12
condylar offset
12
posterior direction
12
cruciate ligament
12
quadriceps muscle
12
posterior
11
pco
9
deep knee
8
total knee
8

Similar Publications

Purpose: Asymmetric anterior closing-wedge high tibial osteotomy (ACWHTO) allows correction of both excessive posterior tibial slope (PTS) and varus deformity. However, the complexity of this surgery requires a high degree of accuracy, which is less likely to be achieved with standard instrumentations. This study aimed to determine the accuracy of 3D patient-specific cutting guides (PSCGs) to provide the accurate planned correction in the frontal and sagittal planes.

View Article and Find Full Text PDF

Background: Nonanatomical anterior cruciate ligament (ACL) reconstruction occasionally induces ACL failure without an evident injury episode, necessitating revision surgery. Although the in vivo kinematics of ACL deficiency before primary ACL reconstruction are well documented, the kinematics of ACL failure after nonanatomical reconstruction remain unexplored. The aim of this study is to investigate ACL failure kinematics following nonanatomical reconstruction.

View Article and Find Full Text PDF

Background: Traditional examinations of anterior cruciate ligament (ACL) injuries focus primarily on static assessments and lack the ability to evaluate dynamic knee stability. Hence, a dynamic scoring system for knee function is needed in clinical settings. This study aimed to propose a dynamic scoring system based on a large sample of normative six-degree-of-freedom (6-DOF) knee kinematics during gait, and validate its correlation with conventional outcome measurements in assessing ACL-injured knees.

View Article and Find Full Text PDF

Objective: Popliteal artery injury is a rare but serious complication of arthroscopic knee surgery. The absence of comprehensive data and standardized guidelines underscores the urgent need for further investigation. This study examines the incidence, risk factors, management strategies, and long-term outcomes of popliteal artery injury in the context of arthroscopic knee procedures.

View Article and Find Full Text PDF

Background: Ultracongruent (UC) total knee replacement (TKR) designs, serving as alternatives to posterior stabilized (PS) and cruciate retaining (CR) designs, lack conclusive evidence regarding posterior femoral rollback. This study aimed to compare intraoperative posterior femoral rollback and maximal knee flexion between UC and PS inserts, addressing the paucity of literature on femoral rollback achieved with UC designs in total knee replacement.

Methods: A consecutive cohort of 20 patients undergoing robotic-assisted primary total knee replacement, posterior femoral rollback and maximal intraoperative knee flexion were assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!