Improving predictions of ecological responses to climate change requires understanding how local abundance relates to temperature gradients, yet many factors influence local abundance in wild populations. We evaluated the shape of thermal-abundance distributions using 98 422 abundance estimates of 702 reef fish species worldwide. We found that curved ceilings in local abundance related to sea temperatures for most species, where local abundance declined from realised thermal 'optima' towards warmer and cooler environments. Although generally supporting the abundant-centre hypothesis, many species also displayed asymmetrical thermal-abundance distributions. For many tropical species, abundances did not decline at warm distribution edges due to an unavailability of warmer environments at the equator. Habitat transitions from coral to macroalgal dominance in subtropical zones also influenced abundance distribution shapes. By quantifying the factors constraining species' abundance, we provide an important empirical basis for improving predictions of community re-structuring in a warmer world.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850591 | PMC |
http://dx.doi.org/10.1111/ele.13222 | DOI Listing |
J Bacteriol
December 2024
School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA.
Unlabelled: Ubiquitous in nature, biofilms provide stability in a fluctuating environment and provide protection from stressors. Biofilms formed in industrial processes are exceedingly problematic and costly. While biofilms of sulfate-reducing bacteria in the environment are often beneficial because of their capacity to remove toxic metals from water, in industrial pipelines, these biofilms cause a major economic impact due to their involvement in metal and concrete corrosion.
View Article and Find Full Text PDFHistol Histopathol
December 2024
Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.
Recent advancements in single-cell spatial proteomics have revolutionized our ability to elucidate cellular signaling networks and their implications in health and disease. This review examines these cutting-edge technologies, focusing on mass spectrometry (MS) imaging and multiplexed immunofluorescence (mIF). Such approaches allow high-resolution protein profiling at the single-cell level, revealing intricate cellular heterogeneity, spatial organization, and protein functions within their native cellular contexts.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
Introduction: The prostate is densely innervated like many visceral organs and glands. However, studies to date have focused on sympathetic and parasympathetic nerves and little attention has been given to the presence or function of sensory nerves in the prostate. Recent studies have highlighted a role for sensory nerves beyond perception of noxious stimuli, as anterograde release of neuropeptides from sensory nerves can affect vascular tone and local immune responses.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Local immunomodulation with nanoparticles (NPs) and focused ultrasound (FUS) is recognized for triggering anti-tumor immunity. However, the impact of these tumor immunomodulations on sex-specific microbiome diversity at distant sites and their correlation with therapeutic effectiveness remains unknown. Here, we conducted local intratumoral therapy using immunogenic cell death-enhancing Calreticulin-Nanoparticles (CRT-NPs) and FUS in male and female mice.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!