The shape of abundance distributions across temperature gradients in reef fishes.

Ecol Lett

Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, SO14 3ZH, UK.

Published: April 2019

Improving predictions of ecological responses to climate change requires understanding how local abundance relates to temperature gradients, yet many factors influence local abundance in wild populations. We evaluated the shape of thermal-abundance distributions using 98 422 abundance estimates of 702 reef fish species worldwide. We found that curved ceilings in local abundance related to sea temperatures for most species, where local abundance declined from realised thermal 'optima' towards warmer and cooler environments. Although generally supporting the abundant-centre hypothesis, many species also displayed asymmetrical thermal-abundance distributions. For many tropical species, abundances did not decline at warm distribution edges due to an unavailability of warmer environments at the equator. Habitat transitions from coral to macroalgal dominance in subtropical zones also influenced abundance distribution shapes. By quantifying the factors constraining species' abundance, we provide an important empirical basis for improving predictions of community re-structuring in a warmer world.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850591PMC
http://dx.doi.org/10.1111/ele.13222DOI Listing

Publication Analysis

Top Keywords

local abundance
16
temperature gradients
8
improving predictions
8
thermal-abundance distributions
8
abundance
7
shape abundance
4
abundance distributions
4
distributions temperature
4
gradients reef
4
reef fishes
4

Similar Publications

Unlabelled: Ubiquitous in nature, biofilms provide stability in a fluctuating environment and provide protection from stressors. Biofilms formed in industrial processes are exceedingly problematic and costly. While biofilms of sulfate-reducing bacteria in the environment are often beneficial because of their capacity to remove toxic metals from water, in industrial pipelines, these biofilms cause a major economic impact due to their involvement in metal and concrete corrosion.

View Article and Find Full Text PDF

Single-cell spatial proteomics.

Histol Histopathol

December 2024

Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.

Recent advancements in single-cell spatial proteomics have revolutionized our ability to elucidate cellular signaling networks and their implications in health and disease. This review examines these cutting-edge technologies, focusing on mass spectrometry (MS) imaging and multiplexed immunofluorescence (mIF). Such approaches allow high-resolution protein profiling at the single-cell level, revealing intricate cellular heterogeneity, spatial organization, and protein functions within their native cellular contexts.

View Article and Find Full Text PDF

Introduction: The prostate is densely innervated like many visceral organs and glands. However, studies to date have focused on sympathetic and parasympathetic nerves and little attention has been given to the presence or function of sensory nerves in the prostate. Recent studies have highlighted a role for sensory nerves beyond perception of noxious stimuli, as anterograde release of neuropeptides from sensory nerves can affect vascular tone and local immune responses.

View Article and Find Full Text PDF

Local immunomodulation with nanoparticles (NPs) and focused ultrasound (FUS) is recognized for triggering anti-tumor immunity. However, the impact of these tumor immunomodulations on sex-specific microbiome diversity at distant sites and their correlation with therapeutic effectiveness remains unknown. Here, we conducted local intratumoral therapy using immunogenic cell death-enhancing Calreticulin-Nanoparticles (CRT-NPs) and FUS in male and female mice.

View Article and Find Full Text PDF

Differences in structure, dynamics and Zn-coordination between isoforms of human ubiquitin ligase UBE3A.

J Biol Chem

December 2024

Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA. Electronic address:

Article Synopsis
  • UBE3A/E6AP expression abnormalities are linked to neurological disorders like Angelman syndrome and autism, with three protein isoforms existing that have unique functions and cellular roles.
  • Research shows the isoforms differ structurally, particularly in their N-terminal regions, affecting their ability to bind to the proteasome and multimerize, which is crucial for their proper activation.
  • Advanced techniques, including NMR spectroscopy, reveal that some isoforms have dynamic features that could influence their response to oxidative stress, enhancing the understanding of UBE3A's functions and potential therapeutic targets for related disorders.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!