By contrast with rapid progress in understanding the mechanisms of biosynthesis and signaling of strigolactone (SL), mechanisms by which SL inhibits axillary bud outgrowth are less well understood. We established a rice (Oryza sativa L.) hydroponic culture system to observe axillary buds at the critical point when the buds enter the dormant state. In situ hybridization analysis indicated that cell division stops in the leaf primordia of the buds entering dormancy. We compared transcriptomes in the axillary buds isolated by laser capture microdissection before and after entering the dormant state and identified genes that are specifically upregulated or downregulated in dormant buds respectively, in SL-mediated axillary bud dormancy. Typically, cell cycle genes and ribosomal genes are included among the active genes while abscisic acid (ABA)-inducible genes are among the dormant genes. Application of ABA to the hydroponic culture suppressed the growth of axillary buds of SL mutants to the same level as wild-type (WT) buds. Tiller number was decreased in the transgenic lines overexpressing OsNCED1, the gene that encodes ABA biosynthesis enzyme. These results indicated that the main site of SL function is the leaf primordia in the axillary bud and that ABA is involved in SL-mediated axillary bud dormancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850044PMC
http://dx.doi.org/10.1111/tpj.14266DOI Listing

Publication Analysis

Top Keywords

axillary bud
20
bud dormancy
12
axillary buds
12
axillary
8
hydroponic culture
8
dormant state
8
leaf primordia
8
sl-mediated axillary
8
buds
7
genes
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!