Chemokines and cytokines produced in gingival tissues exposed to microorganisms and microbial products in dental plaque lead to local inflammation and tissue damage seen in periodontal disease. Bates et al. 2018 [1] reported that hemagglutinin B (HagB)-induced matrix metalloproteinase (MMP) responses of single cell cultures containing dendritic cells, gingival epithelial (GE) keratinocytes, or T cells were significantly different from the MMP responses of these same cells grown in multi-cell cultures. Here we report the concentrations (pg/ml) of HagB-induced IL1α, IL6, IL8, IL12(p40), GM-CSF, MIP1α, MIP1β, RANTES, TNFα, and VEGF produced by dendritic cells, GE keratinocytes, or T cells in single cell cultures, two-cell cultures, or three-cell cultures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355999PMC
http://dx.doi.org/10.1016/j.dib.2018.12.087DOI Listing

Publication Analysis

Top Keywords

multi-cell cultures
8
mmp responses
8
single cell
8
cell cultures
8
dendritic cells
8
keratinocytes cells
8
cultures
6
cells
5
dataset chemokine
4
chemokine cytokine
4

Similar Publications

Background/objectives: Although the use of radiation-sensitizing agents has been shown to enhance the effect of radiation on tumor cells, the blood-brain barrier (BBB) impedes these agents from reaching brain tumor sites when provided systemically. Localized methods of sensitizer delivery, utilizing hydrogels, have the potential to bypass the blood-brain barrier. This study examined the ability of photochemical internalization (PCI) of hydrogel-released bleomycin to enhance the growth-inhibiting effects of radiation on multi-cell glioma spheroids in vitro.

View Article and Find Full Text PDF

Trends and challenges in organoid modeling and expansion with pluripotent stem cells and somatic tissue.

PeerJ

December 2024

Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China.

The increasing demand for disease modeling, preclinical drug testing, and long waiting lists for alternative organ substitutes has posed significant challenges to current limitations in organoid technology. Consequently, organoid technology has emerged as a cutting-edge tool capable of accurately recapitulating the complexity of actual organs in physiology and functionality. To bridge the gaps between basic research and pharmaceutical as well as clinical applications, efforts have been made to develop organoids from tissue-derived stem cells or pluripotent stem cells.

View Article and Find Full Text PDF

Cyclosporin A toxicity on endothelial cells differentiated from induced pluripotent stem cells: Assembling an adverse outcome pathway.

Toxicol In Vitro

March 2025

Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstrasse 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria. Electronic address:

Cyclosporin A (CSA) is a potent immunosuppressive agent in pharmacologic studies. However, there is evidence for side effects, specifically regarding vascular dysfunction. Its mode of action inducing endothelial cell toxicity is partially unclear, and a connection with an adverse outcome pathway (AOP) is not established yet.

View Article and Find Full Text PDF

Background: Extracellular matrix protein 1 (ECM1) can inhibit TGFβ activation, but its antifibrotic action remains largely unknown. This study aims to investigate ECM1 function and its physical interaction with the profibrotic connective tissue growth factor (CTGF) in fibrosis and ductular reaction (DR).

Methods: Ecm1 knockouts or animals that ectopically expressed this gene were subjected to induction of liver fibrosis and DR by feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or α-naphthyl-isothiocyanate (ANIT).

View Article and Find Full Text PDF

Tissues and organs contain an extracellular matrix (ECM). In the case of blood vessels, endothelium cells are anchored to a specialized basement membrane (BM) embedded inside the interstitial matrix (IM). We introduce a multi-structural collagen-based scaffold with embedded microchannels that mimics in vivo structures within vessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!