In recent years there has been a strong increase in publications on blood flow restriction (BFR) training. In particular, the fact that this type of training requires only low resistance to induce muscle strength and mass gains, makes BFR training interesting for athletes and scientists alike. For the same reason this type of training is particularly interesting for astronauts working out in space. Lower resistance during training would have the advantage of reducing the risk of strain-induced injuries. Furthermore, strength training with lower resistances would have implications for the equipment required for training under microgravity conditions, as significantly lower resistances have to be provided by the training machines. Even though we are only about to understand the effects of blood flow restriction on exercise types other than low-intensity strength training, the available data indicate that BFR of leg muscles is also able to improve the training effects of walking or running at slow speeds. The underlying mechanisms of BFR-induced functional and structural adaptations are still unclear. An essential aspect seems to be the premature fatigue of Type-I muscle fibers, which requires premature recruitment of Type-II muscle fibers to maintain a given force output. Other theories assume that cell swelling, anabolic hormones, myokines and reactive oxygen species are involved in the mediation of BFR training-related effects. This review article is intended to summarize the main advantages and disadvantages, but also the potential risks of such training for astronauts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355682PMC
http://dx.doi.org/10.3389/fphys.2019.00033DOI Listing

Publication Analysis

Top Keywords

blood flow
12
flow restriction
12
training
11
bfr training
8
type training
8
training interesting
8
strength training
8
lower resistances
8
muscle fibers
8
application blood
4

Similar Publications

Background Aims: Bulevirtide (BLV) is a novel and the only approved treatment option for patients with chronic hepatitis D (CHD). BLV alleviates liver inflammation already early during treatment when only minor HDV RNA changes are observed. We hypothesized that BLV-treatment may influence immune cells in CHD patients and performed a high-resolution analysis of natural killer (NK) cells before and during BLV-therapy.

View Article and Find Full Text PDF

The study presents a numerical parametric investigation of flow structures in channels with a longitudinal-radial profile zR = Const and a spherical dome at the base. The goal of the study was to examine the flow structures in these channels depending on the exponent N of the profile and the height of the dome, to determine the conditions that provide optimal centripetal swirling flow, analogous to blood flow in the heart chambers and major vessels. The investigation was conducted using a comparative analysis of flow structures in channel configurations zR = Const, carried out in two stages.

View Article and Find Full Text PDF

Key Structural Features of Microvascular Networks Leading to the Formation of Multiple Equilibria.

Bull Math Biol

January 2025

Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Rd, Oxford, Oxfordshire, OX2 6GG, UK.

We analyse mathematical models of blood flow in two simple vascular networks in order to identify structural features that lead to the formation of multiple equilibria. Our models are based on existing rules for blood rheology and haematocrit splitting. By performing bifurcation analysis on these simple network flow models, we identify a link between the changing flow direction in key vessels and the existence of multiple equilibria.

View Article and Find Full Text PDF

Microfluidic vessel-on-chip platform for investigation of cellular defects in venous malformations and responses to various shear stress and flow conditions.

Lab Chip

January 2025

Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.

A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems.

View Article and Find Full Text PDF

Imaging of the Placenta.

Clin Obstet Gynecol

March 2025

Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Maryland, College Park, Maryland.

Placental imaging is crucial in prenatal care, offering insights into both normal and abnormal pregnancies. Traditional methods like grayscale ultrasound and magnetic resonance imaging evaluate placental anatomy, whereas Doppler ultrasound is used for functional assessment. Recent advancements include functional magnetic resonance imaging and advanced Doppler software for demonstrating placental density and visualizing spiral arteries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!