A case study of persistent stratocumulus over the Azores is simulated using two independent large-eddy simulation (LES) models with bin microphysics, and forward-simulated cloud radar Doppler moments and spectra are compared with observations. Neither model is able to reproduce the monotonic increase of downward mean Doppler velocity with increasing reflectivity that is observed under a variety of conditions, but for differing reasons. To a varying degree, both models also exhibit a tendency to produce too many of the largest droplets, leading to excessive skewness in Doppler velocity distributions, especially below cloud base. Excessive skewness appears to be associated with an insufficiently sharp reduction in droplet number concentration at diameters larger than ~200 μm, where a pronounced shoulder is found for in situ observations and a sharp reduction in reflectivity size distribution is associated with relatively narrow observed Doppler spectra. Effectively using LES with bin microphysics to study drizzle formation and evolution in cloud Doppler radar data evidently requires reducing numerical diffusivity in the treatment of the stochastic collection equation; if that is accomplished sufficiently to reproduce typical spectra, progress toward understanding drizzle processes is likely.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364314 | PMC |
http://dx.doi.org/10.1175/JAMC-D-17-0100.1 | DOI Listing |
Sensors (Basel)
January 2025
Institut de Recherche en Informatique de Toulouse, IRIT UMR5505 CNRS, 31400 Toulouse, France.
This review explores the applications of Convolutional Neural Networks (CNNs) in smart agriculture, highlighting recent advancements across various applications including weed detection, disease detection, crop classification, water management, and yield prediction. Based on a comprehensive analysis of more than 115 recent studies, coupled with a bibliometric study of the broader literature, this paper contextualizes the use of CNNs within Agriculture 5.0, where technological integration optimizes agricultural efficiency.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Beijing Institute of Radio Measurement, Beijing 100854, China.
The efficient acquisition and processing of large-scale terrain data has always been a focal point in the field of photogrammetry. Particularly in complex mountainous regions characterized by clouds, terrain, and airspace environments, the window for data collection is extremely limited. This paper investigates the use of airborne millimeter-wave InSAR systems for efficient terrain mapping under such challenging conditions.
View Article and Find Full Text PDFPLoS One
January 2025
UK Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, United Kingdom.
Surface water plays a vital role in the spread of infectious diseases. Information on the spatial and temporal dynamics of surface water availability is thus critical to understanding, monitoring and forecasting disease outbreaks. Before the launch of Sentinel-1 Synthetic Aperture Radar (SAR) missions, surface water availability has been captured at various spatial scales through approaches based on optical remote sensing data.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
Mining electric shovels are one of the core equipments for open-pit mining, and are currently moving towards intelligent and unmanned transformation, with intelligent mining instead of traditional manual operation. In the excavation operation process, due to the complexity and changeability of the material surfaces, different excavation strategies should be adopted to achieve the optimal excavation trajectory. It is an important research direction to realize the unmanned excavation of electric shovels by studying a trajectory planning method that is not limited to fixed resting angle surface, can comprehensively consider the type of material surfaces and aim at the minimum excavation energy consumption per unit volume.
View Article and Find Full Text PDFSoil moisture is a key parameter for the exchange of substance and energy at the land-air interface, timely and accurate acquisition of soil moisture is of great significance for drought monitoring, water resource management, and crop yield estimation. Synthetic aperture radar (SAR) is sensitive to soil moisture, but the effects of vegetation on SAR signals poses challenges for soil moisture retrieval in areas covered with vegetation. In this study, based on Sentinel-1 SAR and Sentinel-2 optical remote sensing data, a coupling approach was employed to retrieval surface soil moisture over dense vegetated areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!