Wetland classification has become a primary tool to characterize and inventory wetland landscapes, but wetlands are difficult to classify because they straddle the terrestrial and aquatic boundary and occur in a variety of hydroclimatic and topographic settings. Presently, many ecological wetland classification schemes are focused on the 'hydrogeomorphic' unit, which attempts to account for the physical setting of a wetland. In many cases topographic terms (e.g. flats, slopes) rather than geomorphological terms (e.g. oxbow, floodplain) are used to characterize landforms, and little attempt is made to characterize the process-landform relationships within wetland landscapes. The current misrepresentation of product geomorphology (i.e. topographic rather than landform description) and underrepresentation of process geomorphology (i.e. lacking process-landform relationships) means that many current wetland classification schemes represent an incomplete and static attempt to characterize geomorphologically dynamic wetland landscapes. Here, we use examples from wetlands in the drylands of Africa, Australia, and North America to identify the capacity for adjustment (i.e. form and timescale of adjustment) of wetland landforms and we relate this capacity to the geomorphological concepts of sediment connectivity and landform sensitivity. We highlight how geomorphological insights into process-landform relationships and timescales of landform adjustment can add value to wetland classification efforts, with important implications for wetland management and ecosystem service delivery. We submit that geomorphology has a much larger role to play in wetland characterization and can enhance existing wetland classification schemes. More participation by the geomorphology community in wetland science and more awareness by the ecology community in recognizing and characterizing wetlands as dynamic landscapes will facilitate more effective wetland research and management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.01.399 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!