Interactions between chlorophenols and peroxymonosulfate: pH dependency and reaction pathways.

Sci Total Environ

Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China; USTC-CityU joint Advanced Research Center, Suzhou 215123, China. Electronic address:

Published: May 2019

A non-radical reaction between peroxysulfates and phenolic compounds, as important structural moieties of natural organic matters, has been reported recently, implying new opportunities for environmental remediation without need for catalyst or energy input. However, this approach seems to be ineffective for halogenated aromatic compounds, an important disinfection by-products (DBPs). Here, we shed light on the interactions between peroxymonosulfate (PMS) and chlorophenols and the influential factors. The results show that the chlorophenols transformation kinetics were highly dependent on the solution pH and chlorophenol species: raising the pH significantly accelerated the chlorophenols degradation, and at alkaline pH the removal rates of different chlorophenols were in the order of trichlorophenol > dichlorophenol > chlorophenol > tetrachlorophenol. The faster degradation of pollutants with more chlorine groups was mainly due to their relatively higher dissociation degree, which favors a direct pollutant-PMS interaction to generate radicals for their degradation. The chlorophenol degradation intermediate (i.e. benzoquinone) further mediated the generation of singlet oxygen at alkaline pH, thereby contributing to accelerated pollutant removal. The slower degradation of tetrachlorophenol than other chlorophenols was likely due to its strong electrostatic epulsion to PMS which restricted the reaction. Our work unveils the chlorophenols degradation mechanisms in PMS reaction system, which may facilitate a better understanding and optimization of advanced oxidation processes for pollution control to reduce potential DBPs accumulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.02.039DOI Listing

Publication Analysis

Top Keywords

chlorophenols degradation
8
chlorophenols
6
degradation
6
interactions chlorophenols
4
chlorophenols peroxymonosulfate
4
peroxymonosulfate dependency
4
reaction
4
dependency reaction
4
reaction pathways
4
pathways non-radical
4

Similar Publications

Chlorophenols are difficult to degrade and mineralize by traditional advanced oxidation processes due to the strong electronegativity of chlorine. Here, a dual-site atomically dispersed catalyst (FeMoNC) is reported, which Fe/Mo supported on mesoporous nitrogen-doped carbon is prepared through high-temperature migration. The FeMoNC exhibits a high dechlorination rate of 93.

View Article and Find Full Text PDF

The microbiota of cork and yellow stain as a model for a new route for the synthesis of chlorophenols and chloroanisoles from the microbial degradation of suberin and/or lignin.

Microbiome

January 2025

Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.

Article Synopsis
  • Cork is primarily used for wine bottle stoppers, but it can contain 2,4,6-trichloroanisole, which causes a musty odor that negatively affects wine quality and leads to financial losses.
  • The presence of yellow stain in cork indicates a degradation linked to higher microbial populations, particularly filamentous fungi that break down lignin, and this microbiota contributes to the formation of chlorophenols and chloroanisoles.
  • Research identified specific fungal and bacterial species associated with yellow stain and demonstrated that certain strains can convert p-hydroxybenzoate into phenol, which can then be chlorinated, potentially leading to the development of 2,4,6-trichlorophenol.
View Article and Find Full Text PDF

Differential Inhibition by Cenobamate of Canonical Human Nav1.5 Ion Channels and Several Point Mutants.

Int J Mol Sci

January 2025

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.

View Article and Find Full Text PDF

Phenol and its chlorinated derivatives are introduced into the environment with wastewater effluents from various industries, becoming toxic pollutants. Phenol-degrading bacteria are important objects of research; among them, representatives of the genus are often highlighted as promising. Strain 7Ba was isolated by enrichment culture.

View Article and Find Full Text PDF

Inhibitory Effects of Cenobamate on Multiple Human Cardiac Ion Channels and Possible Arrhythmogenic Consequences.

Biomolecules

December 2024

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a novel third-generation antiepileptic drug used for the treatment of focal onset seizures and particularly for multi-drug-resistant epilepsy; it acts on multiple targets: GABA receptors (EC 42-194 µM) and persistent neuronal Na currents (IC 59 µM). Side effects include QT interval shortening with >20 ms, but not <300 ms. Our in vitro cardiac safety pharmacology study was performed via whole-cell patch-clamp on HEK293T cells with persistent/inducible expression of human cardiac ion channel isoforms hNav1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!