Environmental impact of livestock production has received a considerable public scrutiny because of the adverse effects of nutrient run-offs, primarily N and P, from agricultural land harboring intensive energy livestock operations. Hence, this study was designed to determine the efficacy of dietary phytase supplementation on fermentation of a sorghum grain-based total mixed ration (TMR) using a ruminal in vitro digestion approach. Phytase was supplemented at three doses: 0 (control), 540 (P540), and 720 (P720) g/t dry matter, equivalent to 0, 2.7 × 10, and 3.6 × 10 CFU/t DM, respectively. Compared to P720 and the control, gas production was higher for P540 after 12 h (P = 0.02) and 24 h (P = 0.03) of fermentation suggesting a higher microbial activity in response to phytase supplementation at lower phytase levels. Correspondingly, dry matter degradability was found to have improved in P540 and P720 compared to the control by 13 and 11% after 24 h of incubation (P = 0.05). For ammonia nitrogen (NH-N), a tendency towards lower values was only observed for P540 at 24 h of fermentation (P = 0.07), while minimal treatment effects were observed at other fermentation times. The concentrations of total volatile fatty acids (VFA) were higher (P < 0.05) after 48 h of fermentation for P540 and P720 compared to the control (P = 0.03) by 10% and 14%, respectively. Ruminal acetate tended towards higher values in the presence of phytase after 12 h of fermentation (P = 0.10), but towards lower values after 24 h of fermentation (P = 0.02), irrespective of the phytase dose applied. A trend towards lower ruminal propionate levels was observed in the presence of phytase after 6 h (P = 0.10) and 12 h (P = 0.06) of fermentation, while no effects were found at other fermentation times. In conclusion, phytase supplementation has the potential to improve metabolic energy activity of rumen microorganisms and the use of feed constituents. Thus, phytase supplementation could help to reduce environmental contamination in areas of ruminant production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-04400-1 | DOI Listing |
Poult Sci
December 2024
Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea. Electronic address:
The need for sustainable and safe alternatives to antibiotic growth promoters has driven researchers to explore organic acids (OAs) inclusion in broiler diets. Citric acid (CA), a notable OA, has emerged as a promising alternative due to its various physiological benefits, including improved nutrient digestibility, antioxidant properties, and enhanced weight gain. Despite the improved growth performance, the feed conversion ratio (FCR) does not seem to be consistently affected by CA inclusion.
View Article and Find Full Text PDFNutrients
November 2024
Laboratory of Clinical Nutrition and Dietetics, Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42100 Trikala, Greece.
Background: Phytic acid is abundant in plant-based diets and acts as a micronutrient inhibitor for humans and non-ruminant animals. Phytases are enzymes that break down phytic acid, releasing micronutrients and enhancing their bioavailability, particularly iron and zinc. Deficiencies in iron and zinc are significant public health problems, especially among populations with disease-associated malnutrition or those in developing countries consuming phytic acid-rich diets.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
The co-product canola meal contains little fat and has been used in swine production as a protein source for several decades. More recently, locally produced canola cake has also become available that contains important quantities of residual oil. Both canola co-products contain a considerable quantity of phosphorus (P) with low availability.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre 91540-000, RS, Brazil.
The study aimed to evaluate phytase effects on the availability of zinc (Zn) from corn and soybean meal feeds for broiler chickens, whereas, in parallel, Zn requirements were investigated. A total of 640 Cobb × Cobb 500 male chicks were fed a Zn-deficient diet (18.87 ± 0.
View Article and Find Full Text PDFAnim Nutr
December 2024
Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
The study evaluated the effects of nutritional strategies on broilers challenged with from d 14 to 26. A total of 840 Cobb male broilers were fed five diets in a 2 × 5 factorial arrangement: 1) nutrient adequate diet (PC; 0.84% calcium [Ca], 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!