Parkinson's disease (PD) is the second common neurodegenerative disorder. Deficit of the nigro-striatal dopaminergic neurons causes the motor symptoms of PD. While the oxidative stress is thought to be deeply involved in the etiology of PD, molecular targets for the oxidative insults has not been fully elucidated. 6R-5,6,7,8-Tetrahydrobiopterin (BH4) is a cofactor for tyrosine hydroxylase (TH), the rate-limiting enzyme for production of dopamine, and easily oxidized to its dihydro-form. In this study, we examined the alteration in the metabolism of BH4 caused by a parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP reduced the dopamine content and the in vivo activity of TH in the striatum prior to degeneration of the dopaminergic neurons. We found that administration of BH4 could restore the dopamine content and in vivo TH activity in the striatum of MPTP-treated mice. Unexpectedly, when BH4 was administered with MPTP, BH4 contents in the brain were far higher than those injected without MPTP even at 23 h after the last injection. Because MPTP has been shown to increase ROS production in the dopaminergic neurons, we assumed that the increased ROS oxidizes BH4 into its dihydro-form, excreted from the dopaminergic neurons, taken-up by the neighboring cells, reduced back to BH4, and then accumulated in the brain. We also investigated the action of MPTP in mice lacking quinonoid-dihydropteridine reductase (Qdpr), an enzyme catalyzing regeneration of BH4 from quinonoid dihydrobiopterin. The dopamine depletion induced by MPTP was severer in Qdpr-deficient mice than in wild-type mice. The present data suggest that perturbation of the BH4 metabolism would be the cause of early and persistent dopamine depletion in the striatum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2019.02.005DOI Listing

Publication Analysis

Top Keywords

dopaminergic neurons
16
bh4
9
mptp
8
action mptp
8
dopamine content
8
content vivo
8
vivo activity
8
activity striatum
8
dopamine depletion
8
dopamine
6

Similar Publications

Transient changes in the firing of midbrain dopamine neurons have been closely tied to the unidimensional value-based prediction error contained in temporal difference reinforcement learning models. However, whereas an abundance of work has now shown how well dopamine responses conform to the predictions of this hypothesis, far fewer studies have challenged its implicit assumption that dopamine is not involved in learning value-neutral features of reward. Here, we review studies in rats and humans that put this assumption to the test, and which suggest that dopamine transients provide a much richer signal that incorporates information that goes beyond integrated value.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the most prominent and highly prevalent chronic neuro-degenerative disease generally recognized by classical motor symptoms which are linked with genetic mutation, Lewy bodies, and subsequently selective loss of nigrostriatal dopaminergic neurons. The blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier protect the central nervous system against toxins and are the most significant barriers to effective brain drug delivery in managing Parkinsonism. In recent years, intranasal delivery has attracted remarkable attention for brain targeting as the drug can be administered to the brain directly from the nose employing the trigeminal and olfactory pathways.

View Article and Find Full Text PDF

Are oligodendrocytes bystanders or drivers of Parkinson's disease pathology?

PLoS Biol

January 2025

Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.

The major pathological feature of Parkinson 's disease (PD), the second most common neurodegenerative disease and most common movement disorder, is the predominant degeneration of dopaminergic neurons in the substantia nigra, a part of the midbrain. Despite decades of research, the molecular mechanisms of the origin of the disease remain unknown. While the disease was initially viewed as a purely neuronal disorder, results from single-cell transcriptomics have suggested that oligodendrocytes may play an important role in the early stages of Parkinson's.

View Article and Find Full Text PDF

Ghrelin enhances feeding by activating the growth hormone secretagogue receptor (GHSR). In the brain, GHSRs are expressed in regions responsible for regulating food motivation including the ventral tegmental area (VTA). Endogenous cannabinoids also promote food seeking behaviors through the cannabinoid receptor 1 type (CB-1Rs) in brain regions including the VTA.

View Article and Find Full Text PDF

Regulation of neural stem cells by innervating neurons.

J Neurochem

January 2025

Neurosciences and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.

The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!